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Abstract

The notion of computation has attracted researchers from a wide range of areas, cognitive 

psychology being one of them. The analogy underlying the (metaphorical) usage of 

“computer” in cognitive psychology can be succinctly summarized by saying that the 

mind is to the brain as the program is to the hardware. Two main assumptions are buried 

in this analogy: 1) that the mind can somehow be understood computationally, and 2) that 

the same kind of relation-the implementation relation-that obtains between programs and 

computer hardware obtains between minds and brains too. While the first assumption has 

led to fertile research, the second remained mainly at the level o f an assumption.

Recently our understanding of the implementation relation has been challenged by 

claims of Putnam and Searle (both of which are examined in detail) that every physical 

system can be viewed as implementing every computation. If this were true, then 

computation would hardly be an appropriate notion for describing mental processes.

Many people have attacked these claims by finding flaws in the respective arguments, 

some have even attempted positive accounts o f what it means for a physical system to 

implement a computation (e.g., Chalmers or Copeland). While these positive accounts 

can avoid most o f the problems with the intuitive notion of implementation (as pointed 

out by Searle and Putnam), it is argued that they still do not get at the heart o f their 

criticisms, namely the formation of physical state types. To overcome these problems, a 

positive account o f implementation and physical realization o f computations is developed 

which does not depend on the notion o f physical state, but rather develops the notion of
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Chapter 1: 

Introduction

The notion of computation has attracted researchers from a wide range of disciplines. 

Some of them, for instance cognitive psychology, are very different from and seemingly 

unrelated to computer science. While the reasons for these various attractions to the 

notion of computation differ from science to science, in the case of psychology it might 

be due to its ability to describe real-world processes in an abstract, formal, syntactically 

specified manner. In particular, the capacity o f computers to process information and the 

fact that programs can specify sequences of actions of and in computers inspired some 

psychologists to think of cognitive functions in terms of programs and of the brain as a 

computer (running these programs). The analogy underlying the (metaphorical) usage of 

“computer” and “program” in cognitive psychology can be succinctly summarized by 

saying that “the mind is to the brain as the program is to the [computer] hardware” 

(Johnson-Laird, 1988, the remark in brackets is mine, or Searle, 1984).1 Eventually, the 

guiding ideas o f this analogy became so prominent, originally in psychology, later in 

artificial intelligence, as to establish a genuine research paradigm, commonly called 

“computationalism” or “the computational claim on mind” (abbreviated as “CCM”).2

Sometimes the term “software” is instead o f  the term “program” in this analogy so as to not be committed to any 
particular programming language, and I will follow this idea by using the more general term “computation”, which is 
thought to encompass any computational formalism.
^ I am not necessarily committed to the term “research paradigm” if one wants to understand it in a strict Kuhnian 
sense, in which case one should read it as synonymous with "widely accepted guiding idea for a research direction”.

1
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Two main assumptions are buried in the “mind:brain=program:hardware”-analogy, 

also called the “computer metaphor”: 1) that the mind can somehow be “understood as a 

computation” or be “described by a program” (this will require the adoption of a notion 

o f computation or program, respectively), and 2) that the same kind of relation—(a 

version of) the implementation relation—that obtains between programs and computer 

hardware obtains between minds and brains too. Assumption 1) has led to fertile research 

in psychology as well as artificial intelligence (AI) collecting evidence for its truth, while 

assumption 2) by and large remained at the level of an assumption, presumably because 

neither AI researchers nor psychologists need to pay attention to it. AI researchers, who 

build computational models, implicitly deal with the implementation relation of software 

on computer hardware on a daily basis, but are not concerned with the implementation 

relation of minds on “brain hardware”; nor are psychological studies, which remain at the 

level of “program description”.3 Having established that some notion of implementation 

plays, or to put it more forcefully, has to play some role in the enterprise of 

computationalism, it is crucial to explicate the relevant notions o f implementation and 

assess their role for the computational claim on mind.

One common belief, I take it, that underlies all computationalist explanations is the 

claim that programs, or more generally computations, somehow “mirror” the causal 

structure of computers (^hardware) in particular, and physical systems in general. 

Motivated by computational practice, it is widely held that this mirroring is established 

by setting up a functional correspondence between computational and physical states (the

3 Neuroscience would probably be the closest discipline concerned with implementation issues o f brains. Yet, 
neuroscientists do not attempt to relate program-like descriptions to brain areas, rather they attempt to study the

2
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“implementation relation”). For example, there is a tight correspondence between parts 

o f the architecture o f a von Neumann CPU and expressions of the assembly language for 

that CPU. Another example would be a logic gate (e.g., an AND gate), whose 

“computational capacity” is described by a Boolean function, the values of which in turn 

can be related to physical magnitudes in the physically realized circuit.

While we can more or less easily establish such a functional correspondence between 

physical and computational states for certain artifacts (i.e., devices we have designed to 

allow for computational descriptions), it unclear that this can be done for natural kinds 

(such as brains) too. In particular, one has to be aware that any such correspondence 

crucially depends on “adequate” physical states. In the case of electronic devices the 

appropriate physical states can be determined either by asking the engineers who 

designed the devices or by looking at the blueprint and comparing it to the computational 

description of the device. In the case of biological systems, however, such states are not 

clearly defined. Consider, for example, physical states of a pyramidal cell: which of 

those states could correspond to computational states such that the respective 

computation captures essential parts of the causal structure o f these cells? It has been 

suggested that “firing” vs. “not firing” would be “natural” candidates (e.g., by McCulloch 

and Pitts, 1943)4, but it turns out that this computational model it too reductive as 

essential temporal processes (such as temporal integration of signals, maximal firing 

rates, etc.) are completely neglected. Hence, more factors about pyramidal cells need to

functional role o f  these areas (with respect to the rest of the brain) directly by virtue o f their physiological functions.

4 Interestingly, McCulloch and Pitts (1943) define a notion o f  realization in their paper, which holds between a logical 
description (a “temporal propositional expression”) and a neural n e t This is, to my knowledge, the first time that this 
notion has been used to indicate that a “computational description” is implemented in a physical system

3
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be taken into account, yielding more physical states that have to correspond to 

computational ones, etc. Artificial neural networks seem to be promising candidates for 

such computational descriptions, but the issue has to my knowledge not been resolved 

yet. It might well be that in the end the complex behavior of pyramidal cells defies a 

computational description, but this is obviously an empirical issue.

To summarize: computations “mirror” the causal structure of a system under a given 

correspondence function between computational and physical states only relative to the 

choice o f  the physical states. Computational explanations o f the behavior of a given 

physical system, therefore, depend essentially on those physical states of the system that 

can be set in correspondence to some computation. This dependence, per se, is not 

problematic as long as one can assume “appropriate physical states” o f a system (e.g., as 

in the case o f electronic devices). If, however, it could be shown that for any 

computational description one can find “physical states” o f a given system, which can be 

set in correspondence with the computational ones and are, furthermore, appropriate (in a 

certain sense o f “appropriate” which will depend on the underlying physical theory), then 

computational explanations would be in danger every system could then be seen to 

compute! In other words, computationalism would be vacuous if  every physical system 

could be viewed as implementing every computation.

Indeed, it has been argued that rocks, for example, can be seen to implement any 

finite state automaton, or that walls to implement the WORDSTAR program (as has been 

suggested by Putnam, 1988, and Searle, 1992). If these claims are true, then something 

clearly must have gone wrong with our computational descriptions: pan-computation

4
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(i.e., every physical system is computing everything) is not a tenable view, neither from 

the theoretician’s nor the practitioner’s perspectives.

Many people have attacked Putnam and Searle’s fatalistic views and argued that there 

is no reason for such pessimism (e.g., Chalmers 1996, Chrisley 1994, Melnyk 1996, 

Endicott 1996, et al.), mostly by pointing to flaws in Putnam and Searle’s argumentation 

(such as wrong notion of causality, wrong notion of state transition, etc.). Some have 

even attempted a positive account of what it means for a physical system to implement a 

computation (Chalmers 1994, Copeland 1996), which in their view does not lead to pan­

computation. If successful, such an account of implementation, would not only rescue 

computationalism from being vacuous, but also provide a means to assess the 

computational capacities of physical systems not of interest to cognitive scientists, but 

possibly to engineers. It is part of the purpose of this work to assess and criticize the 

tenability of these (positive) accounts of what it means to implement a computation.

Both positive accounts o f implementation investigated in this work are in my view 

ultimately based on the idea o f a state-to-state correspondence, that is, o f a tight 

correspondence between physical and computational states. While both are intended to 

overcome any negative implementation result (such as Putnam’s and Searle’s arguments), 

it seems to me that there are intrinsic problems connected with any approach to 

implementation that is directly based on the notion o f physical state. To argue that this 

dependence is indeed the weak spot of any such definition o f implementation, it would 

suffice to show that “legitimate physical states” (i.e., states that are in some sense 

“natural”) o f a particular physical system (not necessarily any arbitrary system, as 

Putnam and Searle claimed) can be defined and set in correspondence to states o f a

5
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computation, which we would not be willing to attribute to the system. Such an 

argument would establish that the notion of physical state is too permissive to serve as a 

basis for a general theory o f implementation.5

In particular, it would follow that correspondence views of implementation (i.e., any 

view that is based on establishing a correspondence between physical and computational 

states) need to be revised or have to be given up completely.6 In favor o f giving them up 

altogether counts the intuition that an account of implementation should not have to be 

concerned with (the formation of) physical states at all, in favor of keeping the conviction 

that computations have to be somehow tied to the physical world.

These two seemingly contradictory ideas, that 1) what a system implements should 

not depend on how we choose and combine physical states, and 2) what a system 

implements should depend on the physical description of the system, are the guidelines 

for my own positive account o f implementation—the other part of this work.

The basic structure o f this investigation is fourfold. First, the intellectual territory is 

laid out. Second, the attacks on computationalism, that is, on the notion of 

implementation used in computationalism are presented in detail. Then reactions to these 

attacks, in particular, two kinds of rescue attempts of the notion of implementation by 

Chalmers and Copeland are analyzed in detail, followed by a presentation of 

counterexamples to these approaches. Finally, a new account of implementation is

5 Note that it is not claimed that state-to-state correspondence views fail to establish implementation relations in every 
case. That would be clearly false as simple examples like an AND-gate and its Boolean function demonstrate. Rather 
it is claimed that there are systems for which these views on implementation deliver unwanted implementation results, 
which are, in my view, mainly due to problems with the notion o f physical state (and not so much the notion of 
correspondence).

6 If  the argument in this work against state-to-state correspondence views is indeed successful, then it is hard for me to 
imagine that any revision could salvage such views—

6
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suggested that does not suffer from the deficiencies o f the other approaches (as it is not 

based on the notion of physical state).

Mapping this outline onto chapters, the following gives a more detailed summary of 

the project:

Chapter 2 first spells out briefly some of the crucial assumptions behind the term 

“computationalism” with respect to the role the notion of implementation plays in it. 

Then the role of the classical notion of computation for computationalist explanations, 

that o f “Turing computablility”, is analyzed and it is argued that from the concept of 

Turing machine alone it is not clear when a physical system implements one of these 

“often-imagined, but seldom seen devices” (B. Smith). A formal analysis o f the standard 

account o f the “implementation of a computation” (as presented by Stabler) and some of 

its pitfalls is followed by a digression into the nature o f “physical and computational 

states”, two notions that are an essential part of every theory of implementation.

In Chapter 2, I locate one of the most severe shortcomings of the computationalist 

position in a particular kind of explanatory gap: that the acceptance o f standard notions of 

computation (such as “Turing-computability”) leaves open exactly how abstract 

“computations” are linked to concrete physical systems realizing them. This lack of a 

reasonable theory of implementation, which specifies the link between computations and 

“computers”, is then made apparent in the analysis o f two provocative claims: Searle’s 

claim that (under the received notion o f implementation) wails “implement” the Wordstar 

program and Putnam’s that every ordinary open system “implements” every finite state 

machine.

7
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In Chapter 4, I first argue that Searle and Putnam’s arguments against 

computationalism are based on the same criticism: as long as physical states (of a given 

physical system) can be chosen freely, one can always relate these physical states to 

computational states (of an arbitrary computation) in such a way that the physical system 

can be viewed as implementing that computation. In particular, it follows that the 

problems of the “logical view of implementation” (as exhibited by Copeland) are the 

same as those of the “state-to-state correspondence view of implementation” as held by 

Chalmers. A thorough examination of Chalmers’ view then shows that contrary to what 

it promises, it does not force the mapping between physical and automata state types to 

be isomorphic. Hence, computation together with Chalmers’ notion of implementation 

cannot be used to describe the causal structure o f physical systems in computational 

terms. I argue, furthermore, that even if this deficiency is accounted for, the problem of 

physical state type formation common to all “state-to-state correspondence views” on 

implementation still remains unsolved. The lack of general criteria for the definition of 

physical states and their formation into physical state types, so I claim, is what ultimately 

admits unwanted implementations of the sort that Searle and Putnam have pointed out. 

To illustrate this point, a very simple physical system is studied, which (according to 

Chalmers’ view) implements an absurdly large class of computations, once a certain kind 

o f physical state formation is introduced. The resulting state types, although somewhat 

unusual, are theoretically and pragmatically acceptable. Moreover, state transitions 

between tokens of those types do not lack the necessary counterfactual support for which 

Putnam and Searle’s approaches have been criticized. From these considerations it is 

concluded that one is left with two non-exclusive options: either formation rules for

8
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physical states (and state types) o f arbitrary physical systems can be provided in general 

without recourse to a particular physical system, or the so-called “semantic” as well as 

“state-to-state correspondence” views of implementation have to be abandoned as 

plausible candidates for a general theory of implementation—they might work to assess 

the computation implemented by a system in cases where physical states for the system 

are given, but fail for systems, for which no notion of physical state is available.

Chapter 5 attempts to tackle the notion “computation” from a practical point of view 

(by looking at the devices that humans design, build, and use). Physical descriptions of 

these devices lend themselves to the very general notion “realization of a function”, a 

precursor and amalgam o f the notions “computation” and “implementation”. The notion 

of realization of a function, in turn, becomes more and more restricted as practical and/or 

physical constraints (such as measurability, feasibility, etc.) are incorporated. Although 

this account is far from being a full-fledged theory of implementation, it can describe 

relations between abstract and concrete systems in terms general enough to subsume 

standard computational systems. These systems are viewed as being realized by special 

kinds of physical systems, called “digitality supporting systems”. The main virtue of this 

approach for any resulting theory o f computation is, then, that the respective notions of 

“computation” and “implementation” are not, as otherwise commonly maintained, 

defined at a set-theoretic level. Rather, they are mathematical extractions obtained from 

behavioral descriptions o f concrete systems, developed from a progression through 

various levels o f abstraction, thereby never abandoning—and, thus, retaining up to the 

highest level—their close ties to the concrete world.

9
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Finally, Chapter 6 concludes by summarizing the achievements of this new account 

of implementation and putting them in perspective with Searle and Putnam style 

criticisms. Besides avoiding the shortcomings of other attempts to rescue the notion of 

implementation, and thus computationalism, the notion of “realization of a function” 

sheds new light on the notion of computation itself: computations cannot be viewed as 

independent o f physics anymore. Alas, their intrinsic ties to the mathematical 

descriptions o f physical objects are revealed. They are only observer-relative to the 

extent that physical descriptions o f physical systems are observer-relative. Furthermore, 

the Church-Turing thesis does not necessarily have to apply to computers (i.e., physical 

systems that compute) anymore—there might be systems that can be described in certain 

physical theories, which can compute non-recursive functions.

The last chapter also briefly points to some of the research directions that might 

develop out of the view on implementation suggested in this work (e.g., the possibility of 

digital systems to allow for representations).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 2: 

Computation, Implementation, and the Computational Claim on 

Mind

2.1 Computationalism or the Computational Claim on Mind

To pinpoint what is subsumed under the notion of computationalism would be a genuine 

research project in its own right given the multitude of different proposals and analyses of 

it (e.g., see Dennett, Sterelny, et. al.). It is not uncommon to find slogan-like phrases 

such as “the brain is a computer” (Shapiro, 1995, p. 523), “the mind is the program o f the 

brain” (Ned Block, 1995), “computation is cognition” (Sterelny, 1989, et. al.), or “the 

mind is a computer” (Smith, 1995) just to name a few, which all hint at the main credo of 

computationalists. But note that these statements are necessarily condensed and cannot 

be taken at face value; all taken together would equivocate essentially distinct notions. 

Turning them into substantial claims requires a careful analysis (e.g. see Smith’s analysis 

o f the claim “the mind is a computer”).

Some people have attempted to spell out principles that, in their view, underwrite the 

computationalist position. Dietrich’s “computational manifesto” (Dietrich, 1990) is an 

example of such a text, which is in particular interesting to the current project, as it 

attempts to explicate what is means for a system to compute a function.

Dietrich defines computationalism as “the hypothesis that cognition is the 

computation o f functions. If computationalism is correct, then scientific theories o f

11
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cognition will explain it as the computation of functions.” (Dietrich, 1990, p. 135) 

Obviously, in interpreting such a statement, much hinges on the involved notion of 

computation, that is, what it means to compute a function. For example, does computing 

a function imply “following rules”, or “executing an algorithm”, or would non- 

algorithmic methods that arrive at the same results count as well? The importance of 

these issues will become particularly apparent, if  one attempts to provide a formal 

definition of the notion “computation of a function” (see section 3).

The project of computationalism, according to Dietrich, is to determine “[...] which 

functions cognition is, i.e., which specific functions explain specific cognitive 

phenomena”, construing computationalism as foundational and methodological. Thus, 

“by itself, it makes no claims about which functions are computed, except to say that they 

are all Turing-computable (computationalists accept the Church-Turing thesis), nor does 

it make any specific claims as to how they got computed, except to say that the functions 

are systematic, productive, and interpretable in a certain way” (Dietrich, 1990, p. 135).7 

Dietrich isolates four properties of computational explanations:

1. They explain an ability or capacity of the system to exhibit certain behavior

2. They must be systematic (exhibit the system as a system)

3. They are interpretive (which is logically entailed by the first property)8

7 While it might be true that most computationalists arc committed to the “Church-Turing-Thesis”, it certainly not true 
that all computationalists feel that they need to take a stance on this issue (quote commentary...). Even more 
controversial is the requirement o f  the “productivity o f computation”, but I will not address this issue here.
8With this Dietrich intends that computations can be interpreted to have content, i.e., that computations are 
manipulations o f representations.
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4. They require computational functions to be productive (to “compute a value” as 

opposed to “look it up in a table”, for example)

These four properties, according to Dietrich (1990, p. 140) “work together to form an 

explanatory strategy which is scientifically respectable and robust”. It is the goal of 

every computationalist to show that and how certain physical systems compute certain 

functions.

Dietrich distinguishes his “computationalism” from what he calls “computerism” and 

“cognitivism”. The former is the thesis

“that explanations o f  cognition w ill look like procedures for our current (late 20th 

century) com puters. Com puterism  is thus tied to a specific com puter hardware 

architecture, in particular a serial architecture. Note that the com puterist is interested in 

m ore than the functions w hich get com puted; she is interested in how they are 

com puted.” (D ietrich 1990, ibid.)

Dietrich does not fail to add that it is very unlikely that anybody seriously holds this 

view. However, as he points out quite correctly, computationalists have often been 

wrongly accused of taking such a stand.

Cognitivism, according to Dietrich is yet another restrictive version of 

computationalism, which purports that

“the functions w hich explain cognition are rational functions defined over propositions 

(or sentences). [..] Cognition is the production o f  output propositions w hich are rationally 

related to input propositions. For the cognitivist, inference is the paradigm atic cognitive 

function.” (D ietrich 1990, p. 141)

13
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Construing “cognitivism” this way, computationalism does not entail cognitivism, since 

computational processes are not restricted to propositional or sentential structures. As a 

consequence, cognitivism could be false, if  it turned out that the most important functions 

are not inferences, according to Dietrich, while computationalism could still be true, if 

these functions were computational. In short, computerism is a claim about how 

functions are computed, whereas cognitivism is a claim about which functions are 

computed.

Not everybody would agree with Dietrich’s proposed categorization (as is apparent 

from the numerous commentaries to Dietrich’s target article). Searle, for example, 

distinguishes three kinds o f questions, the answers to which give rise to three claims on 

mind differing in strength according to what they claim (Searle, 1984, 1992):

1. Is the mind a computer program?

2. Is the brain a digital computer?

3. Can the operations of the brain be simulated on a digital computer?

The three related views, which answer the respective question affirmatively, are then:

1. Strong AI

2. Computationalism/Cognitivism

3. Weak AI

14
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Searle’s stance is that questions 1 and 2 must be answered negatively, whereas a positive 

answer can be given to question 3. Without going into detail, it is prima facie not clear at 

all how Dietrich’s notions of “computationalism”, “computerism”, and “cognitivism” 

would figure in Searle’s categorization.

This apparent terminological discrepancy is indicative of the ongoing foundational 

debate in cognitive science and the philosophy of mind about the nature and extent of 

computationalist positions. Because of different aims, terminologies and analyses, 

computationalist positions differ from author to author, and it is important to keep these 

different claims on mind (i.e., different versions of computationalism) separate.

There are, for example, other descriptions of computationalism that emphasize the 

information processing capabilities of computers (such as Dennett’s who views 

computationalism as the conjunction of three theses: “thinking is information 

processing”, “information processing is computing (is symbol manipulation)”, “the 

semantics of those symbols connect mind and world”). Again others underscore essential 

distinctions (such as the “analog/digital” distinction, etc.) maintained by 

computationalists (e.g., see Demopoulos, 1987).

To avoid confusion, I will use the term “computationalism” in this work as standing 

for any position that is committed to the claim that mental states are computational states. 

Note that this notion is “parameterized” by the notion of computation: since what counts 

as computational with respect to one account of computation, might not count as 

computational with respect to another, what are mental states, then, with respect to one 

account of computation, might not be mental states with respect to another. Fortunately, 

computationalists have traditionally been committed to a particular notion of
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computation, the classical notion of Turing machine computability (see the next section), 

which justifies the above terminological “sweep”. Another, more important reason, why 

the peculiarities of the various positions on computationalism do not matter for the 

current endeavor is that the notion of implementation is directly connected to the notion 

of computation. Hence, as long as the notion of computation is given, one can study the 

related implementation issues (that is, when a computation o f a particular kind is 

implemented) without having to pay attention to extraneous factors such as the 

representational capacities of the symbols involved in the computation, for example.

Computationalism, so construed, belongs to the wider class o f different functionalist 

positions (e.g, Turing-machine functionalism, psychological functionalism, homuncular 

functionalism, causal functionalism, etc.—see Garfield, 1995). Put crudely, 

functionalism is a commitment to the independence of a functional level of description of 

a “system” (e.g., a cognitive system)—this level is viewed as a genuine level in its own 

right, which may or may not be reducible to lower levels of description (e.g. see Block 

1996). As an explanatory device for theories of mind in cognitive science, it combines 

the advantages of behaviorism and type-identity theory without also inheriting their 

disadvantages (e.g., Kim, 1996). In particular, functional accounts honor the potential 

“multiple realizability” of functional architectures, that there might be different physical 

realizations for one and the same functional organization.

Functional accounts o f the mental differ, among other things, on their ideas about the 

relation between the functional architecture and its (potential) physical realization. The 

difficulty with any such explanation is to steer between the Scylla and Charybdis of being 

either too vague (so as to not have a theory o f realization at all—the “free-floating”
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minds) or too rigid (thus reducing functionalism to a version of the type identity theory 

with all of its flaws). This unbridged gap between functional and physical architectures is 

still haunting today’s versions o f functionalism.

This is where computationalism can play its major trump card: by claiming that 

functional states really are computational states, functional states can be viewed as states 

of a computation that can run on any hardware supporting the abstract computational 

architecture o f  the computation.

For example, since any computation can be simulated by a universal Turing machine 

(see the next section), it follows that this versatile “machine” can implement any 

functional architecture (“functional” in the sense of “computational”)— or so it is claimed 

(see Fodor, 1981). Note that hidden in the last argument is the assumption that it is clear 

how Turing machines can be physically realized, that is, how they can be built (and not 

any Turing machine, but a universal one!).9

It seems that what distinguishes computationalism from all other versions of 

functionalism is that by pointing to technology, to computational practice, to the kinds of 

machine we have built, it provides a (tenable) notion of implementation (something that 

cannot be said about its fellow contenders: if  functional states are not computational 

states, what exactly are they? And how are they related to states of a physical system?). 

Classical artificial intelligence (or “strong AT’ in Searle’s terminology), in particular, is 

built upon the assumption that we know how to implement programs on computers (that 

we built):

9 In a sense, it suffices to know how to realize a universal Turing machine, as it can “simulate” any other Turing 
machine.
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"A rtificial intelligence is about program s rather than machines only because the process 

o f  organizing inform ation and inputs and outputs into an inform ation system  has been 

largely solved by digital com puters. Therefore, the program  is the only step in the 

process left to worry about.” (Bridgem an, 1980)

It is this notion of implementation of a program, stemming from computational practice, 

which, by analogy, is stretched to make it fit the notion of physical realization of minds in 

“wetware”—whether this computational girdle is too tight for biological systems is still 

an open and highly debated issue.

This short and sketchy exposition of the role of implementation in computationalism 

will be fleshed out in the following, not only to substantiate computationalist claims 

about 1) the notion of computation and 2) the relation of computational and physical 

states, but also to be able to analyze various criticisms of computationalism later, which 

attack this very notion of implementation. The consequences of these attacks for 

functionalist explanations, if justified, are quite significant: if computationalim fails at 

what is thought to be its major strength and advantage compared to other functionalist 

accounts, what should we make of functionalism in general? Can functionalist theories 

of the mental be taken seriously if one cannot explain how functional states obtain their 

causal powers from the underlying physical system?10 If functional states cannot be 

individuated at a lower level (i.e., a level lower than the level of functional description),

10 Of course, not all functionalist accounts revert to computational states in order to explain how functional states 
obtain their causal powers. Vet, the ones that do not involve computational states wrestle with a convincing 
explanation of how functional states can be causally efficacious. Simply viewing functional states as physical states, 
which explains how these states get their causal powers, leads immediately to the question what kind of relationship 
the functional states bear to the class of their physical realizers...
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that is, if  functional states are truly independent from their physical manifestations, 

then—unfortunately—Cartesian dualism might be on the up and up again.

2.2 Computation and the Significance of Turing Machines

Most computationalists adhere to “standard notions” of computation inherited from 

formal logic, which were conceived by the forefathers of the theory of computation 

(Godel, Church, Kleene, Post, and Turing) before computers the way we know them 

today even existed.11 The probably most crucial insight of the 30ies with respect to the 

meaning of the “intuitive notion of computation” (then called “effective calculability”) 

was that three different attempts to characterize it formally could be proven to be 

equivalent: the class of recursive functions equals the class o f ^.-computable functions 

equals the class of Turing machine computable functions. These equivalence results are 

possible, because what “computing” means with respect to any of the suggested 

formalisms (i.e., what a “computation computes”) is expressed in terms of functions from 

inputs to outputs; and using functions as mediators, the different computational 

formalisms can be compared according to the class o f functions they compute.

Later, other formalisms such as Markov algorithms, Post systems, universal 

grammars, PASCAL programs, as well as various kinds of automata were also shown to 

“compute” the same class o f functions, referred to as “recursive functions”. Note that an 

identification of “computation” with “computing functions” is a necessary prerequisite

11 This is not to say that people have not thought about how to build computers. The idea of a mechanical calculator 
goes back at least to Pascal and quite sophisticated machines have been conceived and some even built. One of the 
most extraordinary developments was Babbage’s “difference engine”, which he himself unfortunately could never 
complete.
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for these equivalence results. The extensional identity of all these formalisms supports a 

famous thesis formulated by Church as a definition:

“W e now define the notion [...] o f  an effectively calculable function o f  positive integers 

by  identifying it w ith the notion o f  a recursive function on  positive integers (or o f  a k -  

definable function o f  positive integers). T his definition is thought to be justified by the 

considerations w hich follow, so far as positive justifica tion  can ever be obtained for the 

selection o f  a formal definition to correspond to an intuitive notion” . (Church, 1936, p.

356 in Davis 1965, p. 100)

Using the various equivalents results it follows from “Church’s Thesis” that any of the 

above mentioned formalisms captures our intuitive notion of computation, that is, what it 

means to compute (Note that this is presuppose the construal of computation as 

“computation of a function”). Although this thesis cannot be proved in principle as 

mentioned by Church himself, it became more and more plausible as newly conceived 

computational formalisms were shown to give rise to the same class of “computable” 

functions.

What is common to all these computational formalisms, besides their attempt to 

specify formally our intuitive notion o f “computation”, is their property o f being 

independent from the physical. In other words, computations in any of these formalisms 

are defined without recourse to the nature o f  physical systems that (potentially) realize 

them. Even the Turing machine model, which is often taken to be the prototype of a 

“mechanical device”, does not incorporate physical descriptions of its inner workings, but 

abstracts over the mechanical details of a physical realization (this issue will be addressed 

in more detail later).
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It was this prominent feature, the independence of computations from their physical 

realizations, that allowed logicians to study classes of functions that could be “computed” 

according to any one formalism. Limiting results such as the “Halting problem” for 

computers can be derived just by virtue of the specification o f “computations” as 

“recursive” without invoking any facts about the physical details of their realizers.

The independence of computations from the physical realizers also made the notion of 

“computation” an attractive candidate for functional explanations o f mental processes in 

cognitive science, because psychological functions could be studied independent of the 

underlying system by solely paying attention to the role they played in the whole network 

of different psychological functions. The “computer metaphor” helped to establish 

cognitive psychology as a research area in its own right in the late 50ies, thus overcoming 

then still dominating behavioristic positions.

Among the various computational formalisms, the Turing machine model has gained 

most attention in philosophy and cognitive science for various reasons, but certainly also 

because of its property of being an abstract model o f a hypothetical “mechanical” 

machine. Especially for “mechanical explanations of mind” this model seemed to be 

well-suited because of its dialectic nature of being in some sense separated from and at 

the same time connected to the physical.

It is often tacitly assumed—and I will argue mistakenly so—that the Turing machine 

links computations to a mechanical device, to something physical. Certainly none of the 

other formalisms provides such a link, they simply assume that such a link is possible 

(e.g., to explain human computational behavior in terms of ^.-computable functions).
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Computations according to the other formalisms are only indirectly linked to systems that 

could perform and/or realize them via the computational equivalence to the Turing 

machine model. So the Turing machine model works as a mediator between abstract 

computational descriptions and possible systems that could realize these descriptions. 

This means, however, that if the Turing machine model fails to withstand attacks 

regarding its implicit notion of implementation, then all the other formalisms are “cut off 

from the concrete” as well. It will thus be valuable for understanding the importance that 

computationalists attribute to the Turing machine model to consider Turing’s original 

motivation that led to his development o f ‘Turing machines”.

Interestingly enough, Turing (1936) invented his machine model of “computation” in 

order to capture the human activity o f “computing”, i.e., the processes a person (the 

“computer”) goes through while performing a calculation or computation using paper and 

pencil. He was not concerned with digital computers at all (although he uses the term 

“computer”, but for a human person doing computations—at that time digital computers 

did not yet exist) or the foundations of computing so much as with the problem of 

analyzing and modeling what the possible processes are that people go through when they 

“blindly” follow rules to do computations. In his analysis of the limitations o f the human 

sensory and mental apparatus five major constraints for doing “automatic computations” 

crystallize (here I follow Gandy’s presentation):12

12 Note that “Turing’s account of the limitations of our sensory and mental apparatus is concerned with perceptions 
and thoughts, not with neural mechanisms. And there is no suggestion that our brains act like Turing machines.” 
(Gandy, 1988, p. 87)
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• Only a finite number of symbols can be written down and used in any 

computation;

• There is a fixed bound on the amount of scratch paper (and the symbols on it) that 

a human can “take in” at a time in order to decide what to do next;13

• At any time a symbol can be written down or erased (in a certain area on the 

scratch paper called “cell”);

• There is an upper limit to the distance between cells that can be considered in two 

consecutive computational steps; and

• There is an upper bound to the number of “states of mind” a human can be in and 

the current state o f mind together with the last symbol written or erased determine 

what to do next.

Although there are certainly some steps in Turing’s analysis of an abstract human being 

performing calculations that seemed rather quick and not too well supported (e.g, the 

transition from writing symbols on a two-dimensional sheet of paper to writing symbols 

on a one-dimensional “tape”),14 one can summarize the above in Gandy’s words as 

follows:

13 This requirement does not exclude an arbitrary amount of scratch paper. It just delimits the range o f perception, 
i.e., the amount o f  information the human “computer” can use at any given time to determine the next step in the 
computation.
14 While it can be shown that a “two-dimensional tape” does not increase the power of a Turing machine, it might 
change things for human computers significantly. One could argue that by presenting values of a function in a two- 
dimensional arrangement we might be able to see “patterns” that could not be appreciated in a one-dimensional 
representation. Assuming then that humans have a capability of “seeing the Gestalt of something” (call it 
“mathematical intuition", “higher level comprehension”, etc. as held by Penrose, Godel, et al.), they might be able to 
outperform Turing machines on certain problems (e.g. diagonal arguments)—this ability basically would correspond to 
some kind of “non-local” operation, see also Gandy 1980.
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“The com putation proceeds by discrete steps and produces a record consisting o f  a finite 

(but unbounded) num ber o f  cells, each o f  which is b lank o r contains a sym bol from a 

finite alphabet. A t each step the action is local and is locally determ ined, according to a 

finite table o f  instructions." (Gandy, 1988, p. 81)

In other words, by “abstracting away” from persons, scratch paper, etc., Turing (1939) 

claimed that all “computational steps” a human could possibly perform (only following 

rules and making notes) could also be done by his machine. That way the Turing 

machine became a model o f human computing, an idealized model, to be precise, since it 

can process and store arbitrarily long, finite strings of characters.15 It is worth pointing 

out that Turing as opposed to Church did not only state a “thesis” regarding the intuitive 

notion of computation, but he actually proved a theorem (see also Gandy, 1988, p. 83, 

who restates Church’s Thesis as Turing’s Theorem):

Theorem 2.1: [Turing] “Any function that can be computed by a human being following 

fixed rules, can be computed by a Turing machine”.

This much stronger result, namely that o f having proved that humans beings (following 

fixed rules as defined in Turing’s analysis) cannot compute more functions than Turing 

machines, is often unappreciated and furthermore obscured by calling Church’s Thesis 

the “Church-Turing Thesis” (e.g., see the Stanford Encyclopedia of Philosophy or

Note that the level at which the mechanism of a Turing machine is described lies above the “mechanical level of 
description of physical bodies”. It is rather the same at which we describe the behavior o f a person when he or she 
performs a computation. If one would like to put it provocatively, then Turing machines are described “intentionally".
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Cleland, 1993).16 Turing also believed the converse, that every function computed by a 

Turing machine can also be computed by a human computer (although this, again, does 

not take time and space restrictions seriously, but rather assumes an abstract human 

computer not subject to these worldly limitations). In particular, Turing was convinced 

that “the discrete-state-machine model is the relevant description of one aspect of the 

material world—namely the operation of brains”. (Hodges, 1988, p. 9) The origins of 

Turing’s claim can be found in the intrinsic connection between the notion of 

“computability” and Godel’s notion of “demonstrability” (of a proof in a formal system): 

that which can be “demonstrated” using “definite methods” amounts to what can be done 

by a Turing machine (see Turing, 1936). By relating the limitations of formal systems as 

pointed out by Godel to the limitations of his machine model, Turing

“[ .. .]  perceived a link between what to anyone else w ould have appeared the quite 

unrelated questions o f  the foundations o f  m athem atics, and the physical description o f  

m ind. The link was a scientific, rather than philosophical view; w hat he arrived at was a 

new  materialism , a new level o f  description based on the idea o f  discrete states, and an 

argum ent that this level (rather than that o f  atom s and electrons, or indeed that o f  the 

physiology o f  brain tissue) was the correct one in which to couch the description o f  

m ental phenom ena” (Hodges, 1988, p.6)

Turing’s analysis of the human computer was essentially based on the idea that there can 

be only finitely many different mental states:

“[..] because these states m ust som ehow  be stored in the m ind, in order that they can all 

be ready to be entered upon. A n alternative w ay o f  defending this application o f  the

a  very thorough analysis of the different claims hidden in Church’s and Turing’s theses can be found in
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principle o f  finiteness is to rem ark that since the brain as a physica l object is fin ite , to 

store inifinitely m any different states, som e o f  the physica l phenom ena which represent 

them  must be ‘arbitrarily’ close to each other and sim ilar to each other in structure.

These items w ould require an infinite discerning pow er, contrary to the fundamental 

physical principles o f  today.” (W ang, 1974, p.93, italics are m ine)

The emphasized phrases clearly indicate that Turing used implementation considerations 

to make his claim that there could be only finitely many mental states. While it is not 

clear what kind of notions of implementation he had in mind, it seems safe to assume that 

he believed that the human brain could only have finitely many different states, which in 

turn had to be related to states of the mind. Given these assumptions regarding mental 

states it follows that his machine model can indeed perform and/or emulate any operation 

of a real brain:

‘T u rin g  w ished from the beginning to prom ote and exploit the thesis that all mental 

processes— not ju s t the processes that could be explicitly described by “notes o f  

instructions”— could be faithfully em ulated by  logical m achinery.” (Hodges, p.8)

In his famous 1950 paper on machine intelligence, in which he introduced the “imitation 

game”, nowadays better known as the ‘Turing test”, Turing discusses and rebuts various 

arguments against his machine model and its capabilities at length. The original intention 

to capture human computational activity in an abstract model had given way to the idea 

o f potential intelligent discrete-state machines that succeed in tricking and outsmarting 

human players in the imitation game. This shift in emphasis from the abstract model to 

concrete realizations o f such machines is particularly apparent from the predictions of

K earns (1997).
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how many states a machine would need to model human memory (see Turing, 1950). 

And even before that Turing takes implementation issues seriously when he considers 

methods of constructing machines and whether machines so constructed should be 

allowed to participate “as machines” in the imitation game.

So, at the core of the concept “Turing machine” lies the idea o f a mechanical device 

that can be actually built (the infinite tape being substituted by an arbitrarily extendable 

tape, for example), or that, when taken as an idealized entity, exists in Plato’s heaven. 

Either way, this real/ideal machine is described or modeled by a mathematical structure,

i.e., the quintuple that is usually taken to be the Turing machine. To distinguish between 

the Turing machine qua machine (real or ideal) and the mathematical structure, I will 

introduce subscripts 'P' and ‘A f  standing for “physical (system)” and “mathematical 

(structure)”, respectively.

The Turing machine^/ serves a twofold purpose: it is not only thought to be a 

mathematical model of the Turing machinep but also an adequate representation of a 

human person performing computations (with paper and pencil following rules). Turing 

machine^/ somehow is an abstraction o f Turing machinep (abstracting over “most” 

physical peculiarities, yet retaining computationally relevant features such as the tape, the 

read/write head, etc.). At this abstract level of description it shares “computational 

restrictions”, which are captured by the mathematical structure, with abstract human 

computers (such as “finitely many different symbols involved in every computation”, 

“finitely many different states”, etc.). But what exactly are the relationships between the 

formal structure (i.e., Turing machine^/) and the human computer on one hand, and the 

formal structure and the Turing machinep on the other? Is the relationship between
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mathematical structure and physical machine that of implementation? And if so, is that 

also true of the relation between and mathematical structure and human computer?

The answer to these problems regarding the role and relationship of Turing 

machines^/ with respect to their physical realization and human computational capacities 

is non-trivial. Even the relationship between the mathematical structure and the device 

“Turing machine” is not all that clear. How are “computational states” of a Turing 

m achine^ related to states of a Turing machine/?? The latter, being a physical system, 

would have to be described in some physical language, e.g., the language of mechanics; 

yet it is not clear that we would find any physical states in that description that 

correspond (even if only slightly) to those defined in the abstract machine; in fact, it 

seems very unlikely to me. Consider, for example, a Turing machine/?, which moves the 

tape head at a continuous speed in one direction until “its machine table” (however it is 

realized physically) tells it to move the head in the other direction. Because of inertia, 

etc. the head does not stop on the current tape square, but only over the next one, then 

reverses direction and speeds up again. If the tape area under the tape head (i.e., the 

current position of the tape head) is taken to correspond to “abstract square”, then in this 

case Turing machine/? would fail to realize Turing m achine^/. If this, however, is not 

taken to correspond to the abstract square, what is? The speed of the tape head plus 

position? Obviously the answer is not straightforward. And this is only one of the many 

problems that one could imagine would make it difficult to find a simple state-to-state 

correspondence between physical states o f Turing machinep and state of the machine 

table of Turing machine^/.
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Therefore, in order to be able to establish a correspondence between both kinds of 

machines, one would have to abstract over most of the physical properties of a particular 

Turing machinep (such as speed, materials, what corresponds to the tape head if neither 

tape nor head is used, etc.). Note that nothing in the specification of Turing machine^/ 

forces us to be committed to a particular realization of Turing machine^/. In fact, nothing 

in its specification forces us to be committed to its being a machine in the first place; all 

there is to Turing m achine^ is a mathematical structure of a particular kind (five-tuple, 

finite sets, etc.). The whole talk about “tape”, “head”, etc. is a way to visualize or 

motivate what we have already specified at the necessary abstraction (i.e., the 

mathematical structure). Hence, if a Turing machinep is to be compared to a Turing 

machine^/, one can compare them only at exactly this mathematical level of abstraction. 

This, in turn, requires a way of abstracting from Turing machinep to get to Turing 

machine^/, but this is what we were trying to do in the first place.

The situation is not any better for establishing a correspondence between a human 

computer and a Turing machine^/. Even comparing humans to Turing machinesp 

presents serious difficulties: “How exactly do tape head movement and printing on tape 

relate to hand movements and scribbling on scratch paper?” is probably not answerable at 

all at the level of classical fields. What are “hands” and “scribblings” and “scratch paper” 

in terms o f fields anyway?

Thus, only by involving meta-theoretical considerations about the nature of 

mechanical possibilities could Turing argue that humans (following rules) and Turing
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machine^/have the same “computational” limitations.17 But what about systems that do 

not obviously behave in such a way as to give rise to mechanical descriptions? Could 

those systems implement Turing machines^/? And what about the physical system 

“brain”? Does the brain with its various electrical inputs and outputs implement a Turing 

machine^/? Even though the problem of what humans can compute with paper and 

pencil following rules seems decided, the general problem of what a physical system can 

compute according to the notion ‘Turing computable” will be left open if there is no 

theory that explains how to relate a physical system to a Turing machine^/. In other 

words, as long as there are no criteria that determine what it means to implement a Turing 

machine^,18 it will not be clear what a physical system can or does compute. It is 

perfectly imaginable that there could be physical devices that utilize non-recursive 

processes if  such processes existed (see the first section of chapter 5).

2.3 The Standard Account of Implementation

Although there is no general account of what it is to implement a Turing machine^/, there 

are a few explicit, very general suggestions of what it means to implement a computation, 

where “computation” is defined as anything specified by any of the different equivalent 

computational formalisms (e.g., see Dietrich 1990, Chalmers 1996, Copeland 1996, et 

al.). Often, this definition is cast in even more general terms so as to not be forced to 

make any commitment to a particular notion o f computation (or the notion of

17 Note that physical models of Turing machine^ are subject to the same kinds of practical constraints that humans 
are—neither do they have arbitrary amounts of scratch paper/tape nor time at their disposal. Hence, the abstract 
mathematical structure is an idealization of and theoretical limit for both.
18 We do not even have such criteria for a Turing machinep—for one, because to my knowledge nobody has 
attempted to give a rigorous physical description of it
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computation at all, for that matter): instead of “the computation implemented by a 

physical system” one focuses on “the function implemented/realized by a physical 

system”. Note that the terms “implemented” and “realized” are often used synonymously 

in this context. Stabler (1987) presents, what could be called the “standard account of 

what it is to realize a function”:

“W e require first that the states o f  the system  can be interpreted as representing the 

elem ents o f  the dom ain and range o f  the function, and we require that (in certain 

circum stances) i f  the system  is in a state representing an elem ent o f  the dom ain o f  the 

function, physical laws guarantee that it w ill go into a state representing the 

corresponding elem ent o f  the range o f  the function.” (Stabler, 1987)

Formally, this can be written as follows (note that I have renamed variables so as to be 

consistent with other presentations):

Definition 2.2: Let S  be a physical system and/ a function. S  computes/ if, and only if,

1. there is an “interpretation” or “realization” function /  from a set PS of physical 

states of the system onto the union of the domain and range of f  such that

2. physical laws guarantee that (in certain specifiable circumstances) if the system is 

in a state i in PS, then the system will go into state o (in PS) such that I(o)-J{I(i)).

m — ► / / ( / ) )  =/(o)

/ /

S — the physical 
system >  S(i)=o
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F ig u re  2.1 The standard account o f  physical realization o f  a function: i 

and o are physical states o f  the physical system  5 , /  is the interpretation 

function that m aps these states onto the union o f  the range and the 

dom ain o f / .

This definition is very general in that it includes various other accounts as special cases. 

Unfortunately, as it stands, the standard account o f implementation does not quite work. 

It has been pointed out that it is “too liberal” as it does not put any restriction on the 

interpretation function: without any restriction every system can be viewed as 

implementing every computation (the next chapter will explore two arguments in that 

direction, one by Putnam and one by Searle, in detail to analyze what exactly needs to be 

constrained). Finding these constraints is crucial to computationalism, because otherwise 

computationalism looses its explanatory force if everything can be viewed as computing 

every function.

One prima facie difficulty o f the standard account is that “terms like ‘state’ and even 

‘physical state’ tend to be used very loosely in this sort of context” (Stabler, 1987, p. 3). 

Stabler demonstrates the potential to “abuse” the standard account by defining a special 

kind of physical state: assume the behavior F  o f a given physical system S  can be 

described in a physical theory P  (as long as certain background conditions C obtain that 

make this description applicable). Suppose further that an infinite sequence of times r„ t2, 

t3, ... is specified. Infinitely many “physical states” can then be specified by stipulating 

that the system is in state px if  and only if it satisfies its description F  at time t{. If the p { 

are then taken to be the computationally relevant states, the system will “compute” any
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function / over the natural number. Define the interpretation /  (for an arbitrary function /  

over the natural numbers) to be

To put what happens here into plain English: S com putes/by going through a sequence 

o f states that are states by virtue of its description F  being true of S  at the respective time 

(under conditions Q . In a sense, S  does not really “com pute/’ but rather “enumerates” 

the pairs (if[i)) at any two successive points in time:

"The trick used in  this exam ple is obviously to get the object to com pute the function by 

som ehow building the function into  the interpretation function. W e could equally well 

build  the func tion  into the specification o f  the com putationally relevant states themselves, 

or into the specification o f  the circum stances in w hich the com putation takes place, it 

would be nice to explain exactly how these sorts o f  tricks can be excluded, but this 

problem  is hard and fortunately beyond the scope o f  this paper.” (Stabler, 1987, p. 4, 

em phases are mine)

To see what needs to be done in order to “exclude tricks of this sort”, one needs to 

analyze different kinds of “tricks” and hope to be able to detect “common patterns”—this 

will be the task of the two following chapters. It is clear that there must be “some 

restrictions on the interpretation function used in any empirically substantial 

computational claim” (Stabler, p. 4). For now it suffices to point to one obvious problem 

with the above definition, namely that states are picked out by particular times (since it 

was a straightforward way to obtain infinitely many computational states that could

ill if / is 0 or even 
_/((/-1)/2) otherwise
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correspond to the infinitely many pairs of natural numbers that define f) . What if  the 

computationally relevant states have to be “somehow extracted” from a physical 

description of the system?

“This raises a problem  for the idea that an ordinary calculator m ight realize the addition 

function on the natural num bers. The problem  is that the addition function is infinite (in 

the sense that it has an  infinite domain): any pair o f  num bers can be added, and there are 

infinitely m any different pairs. To realize the addition function, then, a physical system  

would have to have infinitely m any com putationally relevant physical states (since our 

interpretation /  m aps a set o f  states onto  the union o f  the dom ain and range o f  the 

function). Obviously, the states w hich are com m only regarded as the relevant states o f  

the calculator are not infinite in num ber.” (Stabler, 1987, p. 5)

Besides the question, whether physical systems can realize infinite functions at all (e.g., 

using infinitely many states), it seems that one has to account at least for cases like the 

calculator and revise the standard account to allow it to realize an infinite function using 

finitely many states. The idea is that infinitely many computational states are not needed 

to realize an infinite function if  each argument of the function corresponds to a finite 

sequence of computational states. In other words, each natural number (that is an 

argument of j )  would be “represented” by an input sequence of a finite number o f 

computational states, and by the same token, each value o f /fo r  a given argument would 

correspond to an output sequence of finitely many states. The revised standard account, 

which allows a system with only finitely many (computationally relevant) states to realize 

an infinite function is presented by Stabler as follows:
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Definition 2.3: [Revised standard account] Let S  be a physical system and / a function. S  

computes/ if, and only if,

1. there is an “interpretation” or “realization” function In, which maps a set o f finite 

sequences o f physical “input” states of the system onto the domain of f ,  and an 

interpretation function Out, which maps a set of finite sequences of physical “output” 

states onto the range off

2. physical laws guarantee that (in certain circumstances Q  if the system goes 

successively through the states of an input sequence seqif it will go successively 

through the states o f the corresponding output sequence seq0 where Out(seq0) = 

fln(seq,)).

Note that the revised standard account has made two crucial transitions: an explicit 

transition from (potentially) infinite sets o f physical states to finite such sets, and another 

tacit transition from “physical states o f the system” to sets of “physical input states of the 

system” and “physical output states of the system”. This is especially noteworthy as the 

latter account implicitly excludes so-called “inner states” o f the system (which the former 

implicitly included): only the input-output mapping matters in the revised standard 

account as succinctly expressed by the formula Out(seq0) = fln {seq f). Put differently, 

the physical system is considered a black box, whose “inner mechanisms/workings” (as 

described by a physical theory) are abstracted over. Thus, while the revised standard 

account can answer the “what” question (i.e., “what function does a physical system 

realize”), it will not be able to answer the “how” question (i.e., “how does a physical 

system realize the function”), because it only took input and output states from the
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physical theory (in which the system is described) ignoring the rest. So, if one wants to 

account for the “how” question as well, more of the physical description of the system 

(than merely sets o f input and output states) needs to be retained in the definition of 

“physical realization of a function”.

It is interesting to compare definition 2.3 to Dietrich’s account of what it means to 

compute a function:

Definition 2.4: [Dietrich] Let S  be a physical system and /  a function. The computation 

off  can be attributed to S  successfully when it is possible to explain S’s computation off  

in terms o fa  sequence of functions <gi,•■•,£„> (n>l) such that:

1 -  / = 2 n 0 S n - . 0 - » ° g l

2. the sequence <g„... ,g„) is productive

3. S  passes through a sequence of states each o f which corresponds via an interpretation 

function /  to either the domain or the range of one of the g-’s, and each state between 

the first and final states is the range o f some g, and the domain of some g.,

4. the g;’s are antecedently understood

And Dietrich adds that “when/  =gn°gn-i°---°g\ and the g ’s are non-trivial, it is natural to

say that the sequence of functions <gi,...,g„) analyzes the computation o f / b y  S  and 

explains the capacity o f S  to compute/ . ”
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While both definitions involve “finite sequences of computational states”, they 

involve the notion for different purposes. In definition 2.3 sequences of computational 

states are used to “represent” numbers (from a countably infinite domain). These 

sequences are the input and output to the physical system, while in definition 2.4 it is not 

clear what would count as input and output, since neither of these terms is explicitly 

mentioned. It seems implied, however, that inputs and outputs are simply taken to be 

“computational states”, since “5 passes through a sequence of states each o f  which 

corresponds via an interpretation function I  to either the domain or the range o f one o f  

the g i j ” . If this is so, then Dietrich’s account is susceptible to the same kind of objection 

as the standard account o f definition 2.2. The only difference seems to be, then, that 

while the standard account was silent about the “internal structure” of the computation, 

about “how the system realized the function”, Dietrich’s version requires the system to go 

through a finite sequence of steps, each of which is again determined by some function. 

There seems to be a similarity between what Dietrich had in mind and Cummins’ idea of 

step satisfaction (see Cummins, 1989), as each function gt could correspond to an “atomic 

step” in the algorithm defined by (g„..-,gn) and executed by the system (which reflects 

his requirement of the productivity o f computations).

Assuming that there are only finitely many relevant computational states in a system 

(as in definition 2.4), an additional criterion has to be added to Dietrich’s definition, 

namely that all g,’s be finite. This, in turn, implies that/ has to be finite too. Therefore, 

Dietrich’s definition would have to be altered in order to allow for sequences o f input and 

output states as in the standard account of implementation (which very likely leads to
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modifications of other parts o f  his definition, in particular the sequence of functions the 

system has to go through).19

There are other modifications to definition 2.3 that become necessary upon further 

analysis. It has been pointed out by Kripke (1981), for example, that a physical machine 

can only “approximately” or “imperfectly” realize an infinite function, for one, because 

time is limited (“it will run out of time”) and also because it will make errors (“nothing is

perfect”):

“ [ .. .]  the m achine is a finite object, accepting only finitely m any num bers as inputs and 

yielding only finitely m any as outputs— others are sim ply too big. Indefinitely m any 

program s extend the actual behavior o f  the m achine. Usually, this is ju s t ignored because 

the designer o f  the m achine intended it to fulfill ju s t one program  [ .. .]  Second, in 

practice it is hardly likely that I really intend to entrust the values o f  a function to the 

operation o f  a physical m achine, even for that part o f  the function for w hich the machine 

can operate. Actual m achines can m alfunction: through m elting wires o r slipping gears 

they m ay give the w rong answer. How is it determ ined w hen a m alfunction occurs? By 

reference to the program  o f  the machine, as intended by its designer, not sim ply by 

reference to the m achine itself.” (Kripke, 1981, p . 33-35)

Kripke’s objection to the general idea of a physical system realizing an infinite function 

rests on the claim that “indefinitely many programs extend the actual behavior o f the 

machine” and that reference to intention of the designer (of a computing device) is 

needed to fix one particular program. To counter objections of that sort, Stabler suggests

*9 While it seems to me that Dietrich might have wanted to reflect the idea of functional composition of “recursive 
functions” in his definition o f implementation, it is not at all clear how one would translate such a sequence of 
formally defined functions into the processes that happen (possibly simultaneously) in a real computer. In particular, I 
fail to see the reason why one would impose such a structure on a computational device (as there are certainly many 
different ways of implementing a function obtained by functional composition).
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modifying part 2 of definition 2.3 by adding the counterfactual clause “if the system 

satisfied conditions of normal operation N  for long enough”:

2’. Physical laws guarantee that (in certain circumstances C and i f  the system satisfied 

conditions o f  normal operation N  fo r  long enough) if the system goes successively 

through the states of an input sequence seqx, it will go successively through the states of 

the corresponding output sequence seqQ where Out(seq0) =J[In(seqi)).

By adding this clause, reference to the designer’s intentions is replaced by conditions of 

normal operation, thus avoiding the problems that the former raises for the functionalist 

(see Stabler, 1987, p. 19). Stabler, being aware that introducing counterfactuals can cause 

more (additional) problems than they can solve (e.g., see Putnam’s discussion of Lewis’ 

notion of causation in his 1988, and also chapter 3), argues that the kinds of 

counterfactuals involved in the conditions o f normal operation are supported by physical 

laws:

“The counterfactuals needed by such accounts [e.g. realization o f  sim ple com putations 

such as the identity function realized by  a wire] are o f  a sort that can be supported by our 

understanding o f  physical laws. There is no reason to suppose that the m ore com plicated 

counterfactuals needed to support claim s about the functioning o f  organism s w ill be 

different in  kind. [ .. .]  w e need only consider w hat w ould be the case i f  the antecedents o f  

our counterfactuals held, and as in our exam ples [e.g., the w ire exam ple m entioned 

above] som etim es our understanding o f  physical laws can guide us quite clearly in that 

consideration.” (Stabler, 1987, p.18, rem arks in brackets are mine)
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Although it would be preferable to dispense with counterfactuals in an account of 

physical realization altogether, it seems that counterfactuals will always enter the picture 

if a notion o f “normal operation” is involved (e.g., “if the system had been in condition C 

at time t, then...”). And such a notion of normal operation seems to take care of 

problems regarding potential malfunctions of a system (i.e., malfunctions with respect to 

the program that was supposed to describe the systems behavior, as noted by Kripke).

It is not quite clear, however, if adding conditions of normal operations can actually 

solve Kripke’s first objection, namely that finite systems cannot realize infinite functions. 

Stabler’s strategy to determine which infinite function a system realizes is to 

“couterfactually extend the life-time of a physical system”: if the system satisfied 

conditions of normal operation N  fo r  long enough, then it would be able to compute all 

pairs o f a (particular) infinite function f .  This seems to me to miss the point, because it 

seems to conflate and equivocate the notions of “computing a function” and what I will 

later call “realizing a function”: consider all input and output sequences of length 1 in 

clause 2’ above. These sequence will define a function g  from input states to output 

states, call it “the function realized by the system”. This function is necessarily finite, as 

the set of input states In and the set of output states Out are finite. According to clause 2’ 

it is this function realized by the system that can be used to define another infinite 

function f  whose arguments are sequences of arguments o f f i  called “the function 

computed by the system”. While Stabler argues that the system, according to 2’, can be 

seen to compute fi  I believe that Kripke’s objection actually concerns the function 

“realized by the system” g: in his view, I take it, of no such function g  can it be said that 

it is infinite or that it can be extended to a particular infinite function (without making
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reference to design issues, etc.). If this is so, is a tricky question that hinges upon one’s 

view of how physical systems are best described. I will return to this issue in chapter 5.20

In any case, the modified standard account of implementation 2.3. + 2’, as it stands, 

seem to be a good entree into the discussion of what it means for a physical system to 

realize a computation. To get an idea of the theoretical weight o f its ingredients, I shall 

list a summary o f the entities involved in and used by the standard account:

1. the function/ (to be realized)

2. physical input and physical output states

3. the input mapping In (from finite sequences of input states onto the domain off)

4. the output mapping Out (from finite sequences o f output states onto the range off)

5. the circumstances C

6. the conditions of normal operation N

Each of the six items has its own virtues and “flaws” (that is, difficulties connected with 

it). While I will have to say more about the last two (i.e., the circumstances C and the 

conditions o f normal operations N) in chapter 5 ,1 shall briefly point out the reason why 

the remaining four ingredients add a lot of spice to the discussion.

First o f all, take the function/ and ask what class of functions “possible” fs  belong to. 

In other words, is there an analytic definition o f the class of functions realized by physical 

systems (i.e. the class o f physically realizable functions)? Not only would such a

-®In chapter 5, I will start with descriptions of physical systems that views them as realizing infinite functions and 
then, by incorporating practical constraints end up with descriptions that view physical systems as realizing only finite
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characterization be theoretical desirable, but practically it would probably be one of the 

strongest “limiting results” in computer science. Obviously this question cannot be 

decided at a mathematical level alone as it intrinsically involves descriptions of (all 

possible) physical systems in (actual and potential) physical theories.21 However, as 

already pointed out in section 2, it is commonly believed that the class o f “physically 

realizable functions” coincides with the class o f recursive functions (if it is not a proper 

subset altogether). Yet, there are no arguments for this claim (to my knowledge) that 

involve notions of “actual or potential physical theory” (even Gandy’s fourth principle 

requiring “local effects” has at best “a touch of relativity”)22.

Regardless of whether this question could ever be decided, it will still be necessary to 

add an additional parameter P  (for physical theory) to the standard account (i.e., “Let S  be 

a physical system described in P and/ a function...”) to account for the physical theory in 

which input and output states are (and, more generally, the system itself is) described.

The next three items constitute the heart of most views o f implementation as physical 

realization: physical states are connected to more abstract states by input/output 

mappings, where these states could either be computational states, or as in the above case 

simply numbers (or any abstract object, for that matter). It is particularly important to 

understand how we arrived at this basic structure of the notion o f “realization of a 

function” in order to be able to understand the arguments raised against it. What has led

functions.
2 * I used the term potential physical theory in the sense of “physical theory that does explanatory work” (i.e., not any 
arbitrary physical theory that might not be able to predict anything).
^G andy’s (1980) fourth principle of “computational systems” has a touch of relativity: it is supposed to express the 
fact that effects only propagate at certain speeds (at most at the speed of ligth). Thus, effects in any system are 
restricted to certain “causal neighborhoods” for any given time (those to which they can propagate). See also the first 
section of chapter 5.
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us to modify the (first version of the) standard account (definition 2.2) was the notion of 

“(relevant) computational states o f the system”: the counterexample to definition 2.2 

exploited the fact that no constraints were imposed on either physical states or the 

interpretation o f them for that matter. We avoided such unconstrained formations of 

“physical states” and interpretations thereof, by switching from “physical states” (that is, 

something like “inner state o f the system”) to “input and output states” and replacing the 

one mapping in the previous account by two finite input and output mappings. What the 

counterexample to the first version of the standard account, thus, hinted at are two 

potential sources of danger that allow for arbitrary computations:

1. Unconstrained physical states

2. Unconstrained mappings {In and Out) from physical to computational states

Although the revised account avoids the obvious problems of its predecessor, there 

are still ways to ridicule it (as will be shown in the next chapter). Accordingly, there are 

the following questions that need to be answered by any such view o f implementation: 

What is the nature of these input/output mappings? How are these mappings 

constrained? What physical states are (relevant) computational states? These questions, 

in turn, presuppose answers to question about the nature o f input/output states, or more 

generally, the nature o f  physical states. After all this is what “the bridge” is all about— 

connecting computational and physical states. Depending on the physical theory under 

scrutiny, the term “physical state” can denote very different concepts (e.g. physical states 

in classical physics are different from those in quantum physics). The same is true of
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computational states; being states of computations, their nature is dependent on the 

respective notion of computation (thus, computational states o f a C-program, for 

example, are different from states in a MARKOV algorithm). Furthermore, 

computational states are seem to be very different from physical states, as the former can 

be specified quite abstractly without reference to real-time and/or physical dimensions.23

Since the notion of physical state will play a crucial role in determining the 

computation realized in a physical system, and because the two main arguments against 

the “standard account of implementation” under scrutiny in the next chapters in my view 

essentially challenge the notion of physical state (in addition to notions o f computation), I 

will attend to the notion of physical state first, and then briefly turn to computational 

states (the role o f the mappings between computational states and physical states will be 

studied in detail in the next chapters).

2.4 Physical States and Physical Descriptions

I shall start defining the notion of “physical state” by pointing out that one needs to 

distinguish between “classical” and “non-classical” physical theories, as the latter ones, 

such as quantum mechanics for example, use a different notion of state from that of the 

former ones (see, for example, Messiah, 1961). I will restrict myself to classical physics, 

as the effects that require quantization (of waves, for example) can only be obtained at

23 Compare this to yet another kind o f state that prima facie  differs from both o f  the previous ones, mental states, that 
is, states o f minds that can have content and can be “about” something—whether these states are or correspond to 
computational states, and whether computational states are or correspond to physical states is exactly what 
computationalism seeks to answer.
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very small scales, and I will simply assume that these levels o f description are not 

relevant for cognition.24

Assuming classical physics, thus leaves us with the “standard definition o f physical 

state of a system” as the value o f each variable of a mathematical system of equations at a 

given time: dependent variables range over different physical dimensions and time is the 

only independent variable. Put differently, the values o f all other variables are always 

considered with respect to changes over time. In classical mechanics, for example, there 

would be two kinds o f variables, one kind for location and one for impulse, for each 

spatial dimension.

The kind of “mathematical system”, the system o f equations (better: set or list of 

equations) used to describe the behavior o f a physical system, is called dynamical system. 

It is a collection o f mathematical equations, either differential or difference equations, 

depending on whether time is taken to be discrete or real-valued. Independent of the 

assumptions on time, the values of the variables for each relevant physical dimension can 

also either be discrete or real-valued. So there is a total o f four combinations, all of 

which are possible: all variables can be either discrete or continuous, but it is also 

possible to have a system with discrete variables for physical dimensions, yet a real 

variable for time. And the fourth option is to have time discrete, but all variables for 

physical dimensions continuous. Which option is used depends solely on the kind of

24 I do not want to exclude these quantum level o f description apriori, as there is a possibility that they might actually 
play a crucial role in cognition (see for example Penrose 90,94). However, it would seem rather absurd to me that any 
fault-tolerant biological system would rely on quantum effects that could be easily disturbed. In other words, it seems 
to me that in order to be a robust, reliable, fault-tolerant system extremely small effects that are even minimal 
compared to regular signal noise would have to be ignored and dependence on them avoided, at least that is what 
engineers attempt when they try to design reliable systems—but maybe nature came up with a robust and reliable way
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physical system the behavior of which one wants to describe as well as pragmatic 

assumptions and constraints (such as “exactness of measurements”, “required degree of 

precision”, etc.).

It is the mathematical apparatus of differential equations that is used to describe the 

behavior of most physical systems. For example, classical mechanics requires its 

variables to be real-valued. It is important to note, however, that nothing intrinsically 

hinges upon it. A dynamical system can be a discrete system, if difference equations are 

used instead of differential equations, and for many systems of differential equations one 

can generate a system of difference equations and vice versa (e.g., see Yorke et al., 1996).

So, to describe a physical system, one needs to introduce a variable for each relevant 

physical dimension and consider it as a function o f time. The simplest way to specify the 

behavior of the physical system would be to provide graphs of each such variable over 

time, that is, to have a set of functions X x(t), X2(t) , ..., Xn(t) where Xx{t) yields the “state” 

of the relevant physical dimension Xx at time t. This set of functions will determine the 

behavior of the system for all times. However, it does not reveal the possible 

dependencies o f the Xx on each other. This is where differential equations come in handy. 

They provide a way of specifying the various interdependencies o f different variables in 

such a way that graphs of each variable can be obtained from them, yet the 

interdependencies are also brought to the open. The nature of these interdependencies 

will become a crucial factor in an explanation of the behavior o f the system.25

o f utilizing quantum effects, such as certain non-locality effects, quantum superposition, etc.... in that case the 
following discussion would have to be augmented by a non-classical notion of physical state.
25 The mathematical theory o f  dynamical systems seems well-suited to describe quantitatively systems that exhibit 
what Clark (1997, 1998) calls “continuous reciprocal causation".
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Every real-world system that involves change can potentially be modeled by a 

dynamical system—this is what dynamic systems have been designed to do. According 

to the respective system, this will happen at different levels o f description, at the very low 

level o f fields (take Maxwell’s equations), or the very high level of human decision 

making (take Busemeyer and Townsend’s decision field theory). Dynamic systems are 

not committed to any particular physical quality either (the same way they are not 

committed to the discrete-continuous distinction). They are not committed to particular 

notions of physical states, nor are they committed to a realist or instrumentalist 

interpretation of a theory’s entities. Whatever changes over time, can be modeled, and it 

does not even have to be time, because in case of difference equations all that matters is 

order!

Although dynamic systems are part o f a mathematical theory, their usefulness and 

applicability is not decided within mathematics, but by engineers who use the 

mathematical apparatus to describe and model the behavior of physical systems; or as 

Kutz (1998, p. 796) put it: “A mathematical model [of a physical system] is a description 

of a system in terms of equations”.

The following is a synopsis of Kutz’ (1998) article on “mathematical models of 

dynamical physical systems” in the Mechanical engineer’s handbook. It will shed light 

on two issues that are o f crucial importance to the current enterprise: 1) the nature of 

physical states the way engineers see them, and 2) the nature of descriptions of physical 

systems used by people that need to accomplish tasks with these systems (i.e., who need 

to achieve certain practical results). The reason why this is so crucial is that I will try to 

defend the position that in relating computations to physical systems we need to
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concentrate on notions actually used to achieve practical goals, i.e., on the engineers’ 

notions of physical state (instead of some removed philosophical notions).

First and foremost to modeling physical systems is the idea that what is common to 

all o f them is that they transform, store, and/or consume energy over time (a fact often 

neglected in philosophical discussions):

“Differential equations describing the dynam ic behavior o f  a physical system  are derived 

by applying the appropriate physical laws. These laws reflect the ways in which energy 

can be stored and  transferred in the system . Because o f  the com m on physical basis 

provided  by the concept o f  energy, a genera l approach to deriving d ifferential equations 

models is possible. This approach applies equally well to m echanical, electrical, fluid, 

and thermal systems, and is particularly useful for systems that are com binations o f  these 

physical types.” (Kutz, 1998, p. 796, em phasis is mine)

We assume that there are basically two kinds of physical systems, those with only one 

terminal, and those with at least two terminals (where a terminal is a place where energy 

can enter and/or leave the system in whatever form). Accordingly, two kinds of variables 

(in the mathematical model) have to be distinguished: through (for one terminal systems) 

and across variables (for two terminal systems). Across variables stand for “the 

difference in state” (to be explained shortly) between two terminals, through variables 

stand for the change of physical magnitude. Examples for through variables are the force 

through a spring or the current flow through a resistor. Examples for across variables are 

the velocity difference of the two terminals in a spring or the voltage drop in a resistor. 

Given this distinction, one can compute the flow of power P{t) into a physical system 

through both terminals as the product of the through variable f[t) and the difference
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between across variables v,(r) and v2(f), i.e., P=j{vx-vJ (negative values mean that power 

flows out of the system). The energy transferred to the element between terminal tz and tb 

is thus:

E= fPdt= ff[vr v2)dt.

“Physical devices are represented by idealized system  elements, o r by com binations o f  

these elements. The behavior o f  a one-port (two term inal) elem ent expresses the 

relationship between the physical variables for that elem ent and is defined 

m athem atically by a constitutive relationship  (which is derived empirically by 

experimentation rather than fro m  any m ore fundam enta l principles). The elem ent law, 

derived from  the constitutive relationship, describes the behavior o f  an elem ent in terms 

o f  across and through variables and is the form m ost com m only used to derive 

m athem atical m odels.” (Kutz, 1998, p. 798, em phases mine)

So, (mathematical) dynamical models are used to model simple and complex physical 

systems. They assume “ideal system elements”, whose “element laws are defined by a 

constitutive relationship derived empirically by experimentation rather than from any 

more fundamental principles”. This statement cannot be stressed enough: it is the 

engineer who by virtue o f measurements relates different physical magnitudes and 

dimensions, and then formulates laws that govern the behavior of idealized elements. It 

is important to keep this abstraction step in mind. The mathematical model, which 

describes the physical system, has already built into it an “idealization”, which might or 

might not lead to a misrepresentation of the behavior/functionality o f the system. At this
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point the “first implementation problem” already pops up, as one could ask how exactly 

the physical system “implements” the “idealized element”...26

A special form of the equations of a dynamic system, the so-called “input-output 

form” (or I/O form for short), is particularly useful to describing the interaction of 

physical systems with their environments. In these systems,

"inputs correspond to [energy] sources and are assum ed to be known Junctions o f  time.

Outputs correspond to physical variables that are to be m easured o r calculated. [ ...]  I/O 

differential equations are obtained by com bining elem ent laws and continuity and 

com patibility equations in order to elim inate all variables except input and output” (op. 

cit. p. 808, em phasis is mine).

Let /,(r),.../n(r) be the different inputs to a system and O ft),...,O m{t) the different outputs 

of that system. Then the I/O form can be described by m equations using m different n- 

place functions F I(x„...rrn),..., Fm(x,,...^cn) (which have to be continuous):

Om(t)=Fm(I,(/),.. . / n(r))

Take, for example, electrons in a copper wire. Their behavior depends on the difference 

of potential between the two ends of the wire. If the potential differs, electrons will start 

to move, current will flow. According to Ohm’s law the flow of current will be a 

function of the resistance of the wire and the potential difference between its terminals. 

These influences are the inputs to the system (and if  the system can affect another system

26 One does not have to look at computational devices and their abstract descriptions (which are even further 
“removed” from reality) to formulate “physical realization”. In fact, it will turn out (in chapter 5) that the notion of
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by virtue o f the same or another physical dimension, these will be the outputs). The way 

inputs and outputs are related is thus given by physical laws, whereas the way the system 

actually behaves over a period of time is given by functions o f the input and output 

dimensions over time. It is important to appreciate the difference between 1) the 

statement that certain relations obtain between different physical magnitudes and 

dimensions in a physical system and 2) a description o f the evolution o f that system over 

time: the first kind of statement makes a nomological claim which is independent of 

actual processes and real-world embodiment as described by the second.

Consider a mass point, for example, for which the forces that apply equal its mass 

times its acceleration. This equations relates (local) force, acceleration and mass o f the 

mass point. However, this does not say much about the actual behavior o f a particular 

mass point. An additional function is required to describe the behavior of the mass point 

over time. Let x(t) be such a function describing the location of the mass point as a 

function o f time. Then together with the knowledge that the first derivative is the 

velocity o f the mass point and the second derivative is its acceleration, one can obtain a 

function that describes the forces exerted to the mass point over time (given the mass of 

the point, too). Or reversed, given the forces over time, one can determine the path o f the 

mass point.

Two components figure, therefore, in the description of the behavior o f a physical 

system: first, equations relating certain physical magnitudes o f a physical system (such as 

the mass point above) in a “timeless” manner—the physical laws—and second, functions

(physical) realization o f  a computation is only at the end o f  a chain of increasingly abstract descriptions o f  a physical 
system, for each of which one can formulate a corresponding “implementation problem”.
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that describe the temporal behavior o f some of these magnitudes (from which the 

temporal behavior of the others can be deduced using the previously specified laws).27

While the I/O-form o f differential equations solely relates inputs to and outputs of a 

physical system, it is sometimes desirable to consider the flow  o f energy within the system 

in addition. This can be achieved by introducing so-called “natural inner states”, which 

correspond to energy sources and sinks o f a system. The modified version of the I/O- 

form looks like this:

M')A(t),. • A M )

0 2(t)=F2( m , -A W  AW ,. • - AW)

Om(t)=Fm(rn,~  AW  AW,- • • AW ) 

p> W=AA/, W,. .A W A W ,--A W )

P2(t)=Fm. M t ) , . . A W  A (  o,. • - AW)

Pk( t) = F ^ (m ,.  .A W A W ,.-A W )

where the Pft) are “inner states”. Mathematically speaking, there are infinitely many 

different sets of equations o f finitely many different inner states that give rise to the same 

I/O form (i.e., that describe the same I/O behavior of a physical system).28 Therefore, it

27 Note that if all relevant physical magnitudes of a system are given as functions over time, no “additional” law is 
needed to describe the system’s behavior, as all relevant information is already hidden in these complete descriptions. 
Thus, some physical laws (such as Newton’s second law) are special forms o f  differential equations that “abstract” 
over behaviors o f particular physical objects. However, it might not be a trivial task (if possible at all) to “reconstruct” 
laws from these I/O-functions.
28 Larry Moss in personal communication.
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is crucial to support a particular choice of inner states by practical considerations if one is 

interested in deriving “the flow of energy” within the system, as there will be dynamical 

systems, which describe the behavior of the system perfectly without having a single 

inner state correspond to an energy source or sink.

Besides energy sources and energy sinks, another “natural choice” for inner states are 

the states of the connections between parts of the system. Thus, a division o f the system 

into “interacting parts” result in a natural description of inner states; and vice versa, a set 

o f inner states and their values can partition the system according to the loci which are 

used to record, measure, etc., in short, define these inner states. But again, as pointed out 

before, these choices depend on pragmatic considerations; theory alone is not enough to 

justify them, let alone to individuate the so-chosen states. It is crucial to keep this in 

mind with respect to computationalist explanations: if it is claimed that computation 

somehow “mirrors” the causal structure o f a system, and if this mirroring function is 

established by setting up a correspondence between computational and physical states, it 

is crucial to understand that this can only be claimed relative to the choice o f  the physical 

states. If physical states are given and their choice is (pragmatically) justified (as in the 

case of energy sources and energy sinks), computations will be able to reflect parts of the 

causal organization of the physical system (as they only abstract over physical 

dimensions, while preserving the temporal order and the quantity of spatial locations— 

this will be explored in chapter 5). However, if physical states are not previously defined, 

as already pointed out in section 3, one can always define inner states of a system such
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that the system realizes any computational architecture as long as it preserves the input- 

output mapping.29

To summarize what has been said about physical states: first and foremost, one has to 

distinguish two different notions, 1) the actual make-up of a physical system at a given 

time, and 2) the value of all variables of the mathematical model of a physical system 

(e.g., the values o f the variables of a dynamic system) at a given time. The relation 

between the former and the latter is that of idealization, as the latter is derived from 

experiments and measurements making certain idealizing assumptions about the elements 

of the system. A particular form of the mathematical model, the I/O form, made it 

possible to model energy flow through the system. In particular, modifications to the I/O 

form allowed for the introduction of “inner states” o f the system (e.g., states that 

correspond to energy source or energy sinks). However, no unique description of “inner 

states” could be derived from the I/O form itself: infinitely many different dynamical 

systems with different inner states exhibit the same input-output behavior. Therefore, if 

inner states are to be a crucial part of a mathematical model o f a physical system (e.g., 

because one wants to relate them to “functional states”), they have to be justified 

pragmatically.

29 For example, one could argue that a PC computing the factorial function is really a MAC computing the factorial 
function: the PC gets the input-output function right, and as far as inner states are concerned, one choose the ones 
relevant for MACs. Note, however, that this reasoning breaks down immediately, once one opens the PC and 
measures physical magnitudes at particular locations—the notion o f “disassembling o f  a system” seems to play a 
crucial role in this argument (see Dennett, 1986).
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2.5 Computational States and Computational Descriptions

Computational states—to put it provocatively—are “nothing more than abstractions” of 

certain physical states of idealized physical systems from an practical point of view. 

What I mean by this can be explained using a von Neumann-CPU as an example: to say 

that the CPU is “updating its address register” is to say that certain conditions obtain in 

the physical CPU in sequence (that is, over real-time) that allow for a certain change of 

states in a particular spatial region o f the CPU. Because this level o f description (if all 

the physical details were filled in) is not only tedious, but also prevents one from 

expressing truths about all CPUs of a particular kind (regardless o f their spatial locations 

and physical manifestations), an abstraction step, i.e., the shift to a more abstract 

description is very useful. At this level of description, one ignores certain physical 

properties such as voltages, transistors and their chemical make-up, etc. (those properties 

that are not relevant to describing the computation) and talks instead of bits and 

arrangements of bits. What is retained is a correspondence between the number of bits 

and the number of physical locations at which a state change can occur. But whereas 

arrangements of bits are described using n-tuples o f bits, temporo-spatial regions would 

have to be described using a much more complicated and complex formal apparatus (e.g., 

using a set of values of all field parameters for the given spatial region during the given 

time-interval). All of this ballast is not necessary, however, if  one only wants to 

understand the change in the address-register (i.e., the arrangement o f bits) in the CPU. 

Therefore, while the physical description does employ a notion of physical state that is 

defined by the physical theory used to describe the CPU (e.g., the theory of electrical
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fields), the notion of “computational state” is simply the state of the arrangement of bits, 

i.e., that which has been distilled from the physical description: the values o f the 

components of the vector. Contrary to the values of the variables in the physical theory, 

which denote certain physical conditions (in that they, for example, express magnitudes 

and orientations of vectors of a each spatial point in a field), values of bits do not 

correspond to anything, except that they are abstractions of these other physical values. 

Computer scientists and computer engineers have introduced these abstractions because 

the only important property of the underlying physical states with respect to the 

computational capacity of the system is that a particular spatial region can be in either of 

two (sets of) states at a given time (the system has been particularly designed to have this 

property). In short, to simplify matters and to allow one to generalize over different 

physical realizations, the notion “bit” is used to describe particular physical states of 

particular physical systems.

While computational states can be seen as abstractions of certain physical states if  the 

physical system is given, it is not clear how one would go from computational states back 

to physical ones. Thus, if one asks whether a particular system “satisfies” a given 

computational description (“implements a computation”), one would have to check, if 

starting with the physical description of the physical system by abstracting over various 

physical properties one could arrive at the computational description30—whether the 

other route is also possible, i.e., going from computational to physical descriptions 

directly, will be considered in the next chapters. For now may it suffice to note that some

30 Note that it is not prima facie  clear that there is a “generic way” o f abstracting over physical dimensions in a 
systematic manner to obtain computational descriptions.
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computational states (the ones defined for computers we build) are obviously abstractions 

o f certain physical states. Whether all computational states are abstractions o f physical 

states, and whether it is possible to tell if a given physical system implements a given 

computation is exactly the “implementation problem” in the philosophy of mind and 

cognitive science as well as the foundations o f computer science. Before a solution of 

this problem can be attempted, an analysis o f those arguments is necessary that intend to 

show how any computational state can be obtained from a physical system if  physical 

states are defined in a “malicious” way.
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Chapter 3:

CCM’s Convinced Critics

3.1 Attacking Computationalism: Everything Computes!

Computationalism has recently come under heavy attack from various directions. Some 

(especially adherents of connectionism and “dynamic systems people”) hold that mind 

simply cannot be explained in terms of computation. Others believe that crucial aspects 

of the intuitive notion of computation are still not well understood and, hence, not 

reflected in (formal) definitions of computation. Whereas the former position excludes 

computational explanations of mind a priori, the latter insist on a re-evaluation of the 

notion of computation and makes value of the notion of computation for an explanation 

of mind dependent on it.

The reasons for excluding the notion of computation from cognitive explanations vary 

significantly (e.g., see the various articles in Port and van Gelder, 1995). However, there 

is a common theme to two of the most significant philosophical attacks advanced by 

Searle (1992) and Putnam (1988): they locate the most severe shortcomings o f the 

computationalist position in a particular kind of explanatory gap—standard notions of 

computation (such as “Turing-computability”) leave open exactly how abstract 

“computations” are linked to concrete physical systems realizing them. Searle claims that 

(under the received notion of implementation) walls “implement” the Wordstar program 

and Putnam shows that every ordinary open system “realizes” every finite state

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

automaton. Consequently, the validity o f the intuitive account o f implementation, in 

particular once it is taken out of its computational context and applied to a wider class of 

systems (that is, natural systems), must be seriously doubted.

The strategy pursued by Searle is to argue that the notion of “implementation of a 

program” is intrinsically observer-relative and that one cannot derive a syntactic 

description from a physical description. Thus, in his polemic, every object can be 

assigned a computational description under which that object can be viewed as 

implementing any program.

A quite different strategy is taken on by Putnam, who is concerned with the notion of 

“realization of a FSA”. While Searle’s line o f argument presumes a specification of a 

computational architecture on which the program (to be implemented) can “run”, Putnam 

only needs to establish a relationship between a physical system and a finite state 

automaton, which exhibits certain properties (e.g., that state transitions are preserved). In 

nuce, he shows how physical state types can be defined for any physical system such that 

it realizes every finite state automaton.

Both attacks seem to tackle different aspects of the notion of implementation—the 

first seems to get at the problem that every physical system can be “interpreted” as being 

a computer, that is, that every physical system can be viewed as supporting a 

computational architecture (on which the program to be implemented can run), whereas 

the second seems to show how any physical system can implement every instances of a 

particular computational formalism (that of finite state automata). To put the two lines of 

argument into slogans, the first attack seems to be a “semantic view”, as it involves the
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notion of “interpretation”, whereas the other seems to be a “correspondence view”, as it 

sets up a correspondence between physical and computational states.

The following sections will first present Putnam’s argument, as this seems to be the 

less general o f the two, then (Copeland’s reconstruction of) Searle’s views will be 

analyzed.

3.2 Putnam’s Realization Theorem

Hilary Putnam is commonly held to be the originator of functionalism, the view that 

mental states can be individuated and distinguished according to the functional role that 

they fulfill (in the overall architecture). His well-known multiple realization argument 

(Putnam, 1967) showed that type identity (between mental and physical state types) was 

too strong a requirement: the same mental state might be realized in different physical 

ways, which could have nothing in common at the physical level besides realizing the 

same mental state.

These considerations led him to the level of functional description of the mental 

inspired by the Turing machine formalism. Later, he abandoned his conviction that the 

psychology o f an organism could be understood in terms of Turing machines. Mental 

states were not viewed as computational, but rather as terms in a “psychological theory”, 

which bear certain relations to their physical manifestations. Given the notion of 

“functional isomorphism”, a relation that holds between two systems if there is a 

mapping from states o f the one onto states of the other which makes both systems 

isomorphic models o f the psychological theory under consideration, Putnam’s credo 

became:
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“[ ...]  that all m ental states (prepositional attitudes, experiences, etc.) are preserved under 

functional isom orphism. It was built into this proposal [...] that som ething is a ‘m odel’ o f  

a psychological theory only if  it has nonpsychological— physical or com putational, o r 

w hatever— states which are related as the psychological theory says  the mental states are 

related.” (Putnam, 1988, p. 99)

In his book Representation and Reality, Putnam (1988, especially in chapter 5) 

launched a severe attack on functionalism arguing that mental states cannot be viewed as 

mere computational descriptions, not even a combination of physical and computational 

states would suffice to account for the nature of mental states. Furthermore, his 

objections extend to “physical realizations o f a psychological theory”, a notion that can 

be defined as follows:

Definition 3.1: A physical system S realizes a psychological theory T (in the language 

L = < 0 , w h e r e  Q is a finite set of “theoretical terms”, call them “T-terms”, standing 

for mental states, *->’ is the theoretical pendant to “causes”, and “...” indicates additional 

primitives) if  there exists a 1-1 m apping/from  T-terms onto physical state types o f S  

such that the following holds: for all q ,p  in Q, if “q~^pn is a theorem in T and S  is in state 

f q ) ,  then this will “cause” S  to change into state j[p). If S  realizes T, then S  is said to be a 

model ofT.

Given definition 3.1, Putnam claims that “if  any physical state is allowed as a possible 

‘realizer’ for any T-term’ in a psychological theory, then [...] psychological theories will 

just have too many realizations” (Putnam 1988, p. 100).
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This criticism extends naturally to computational descriptions. The independence 

from the physical systems realizing them seems to be a strength and a weakness of 

computations at the same time. Although computational formalisms allow one to specify 

what function /  is defined by a particular computation (in the sense that the computation 

takes values from the domain o f/ as inputs and delivers values from the range o f /a s  

outputs), they implicitly presuppose a notion of implementation, i.e., that it is understood 

on what physical systems they can actually “run”.

To put Putnam’s criticism differently from a cognitive science perspective, the 

assumption that the functionality of mind can be described in computational terms would 

not be sufficient to single out those physical systems that possess minds, since a 

functional description true of physical systems with a mind could also be true of physical 

systems without a mind.

Because abstract finite automata seem to capture essential aspects of the notion of 

“psychological theory” as used in definition 3.1, Putnam gives particular credence to his 

claim by proving that every ordinary open system is a realization o f  every abstract finite 

automaton without input and output (see the appendix of his 1988, pp. 121-125)—I 

christened this result Putnam’s Realization Theorem. He uses this result to make the 

further claim that “the assumption that something is a ‘realization’ o f a given automaton 

description (possesses a specified “functional organization”) is equivalent to the 

statement that it behaves as if  it had that description.” (p. 124) In other words, 

functionalism, if  it were correct, would imply behaviorism (ibid.)—this is truly not a 

welcome conclusion for functionalists (including adherents of CCM). Given the central
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role that finite abstract automata play in computer and cognitive science, this result is 

more than discomforting, and, therefore, seems worthwhile a close examination.

First, a particular level of description of a (given) open physical system is chosen, in 

this case a “field-theoretic” level.31 Then, a description of the physical system in “the 

language of fields” consisting of an exact definition of its spatial boundaries during a 

given interval o f real-time is assumed.32 Finally, an arbitrary finite state automaton 

(FSA) without input and output is fixed. The goal, then, is to find “physical states” and a 

mapping, which relates (computational) states in the automaton to those in the system 

such that the system “obeys” the machine table of the automaton. The definition of 

physical states becomes necessary, because all (field-theoretic) states o f an open physical 

system are assumed only once by the system, hence they are different fo r  different times. 

But common physical states at different times (i.e., state types) are needed to correspond 

to those automaton states (state types) that are repeated during a “run” of the automaton.

Putnam’s proof of his counterintuitive theorem hinges crucially upon a very “liberal” 

formation of physical states, namely an arbitrary (possibly infinite) union of “maximal 

states”, assuming a field theoretic level o f description:

“In physics an arbitrary disjunction (finite o r infinite) o f  so-called ‘m axim al states’ 

counts as a ‘physical state’, w here the m axim al states (in  classical physics) are com plete 

specifications o f  the values o f  all the field variables a t all the space-tim e points”.

(Putnam , 1988, p. 95)

31 Open systems are not shielded from environmental influences. This assumption together with the “principle o f  non- 
cyclic behavior” is crucial to Putnam’s argument as it implies that the physical system assumes each state only once!
32 Note that the physical system need not form or correspond to a “legitimate”, i.e., empirically possible object. For 
the argument, any description o f a spatial region together with its spatial boundaries, “closed set o f points in space” 
topologically speaking, suffices.
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Computational steps (1,2,3,4), automata states A, B, C , ...

s, s, s3 s4
12:00 12:01 '  12:02 12:03 12:04

Real-time, physical states of S: S„ S2, S3, S4, ...

F ig u re  3.1 Physical states are defined as sets o f  maxim al states o f  a 

system  S  for a given interval o f  real-tim e in such a w ay that they are in 

correspondence with autom ata states in a “run” o f  the automaton.

Putnam considers regions in phase-space, that is, real-time intervals during the “life-time” 

of a physical system S, e.g., all maximal states of S  from 12:00 to 12:04 on October 22, 

1997. The set of values of all field parameters at all points within the boundary of S  in 

such a real-time interval he calls an “interval state”. Interval states relate real-time of the 

physical system to “computation time” (computational steps) of the automaton. They 

are taken to be physical states that correspond to sequences of abstract states determined 

by the machine table of the automaton—see figure 3.1. By construction, transitions 

between interval states are “causal” in the sense that they can be predicted from the laws 

of physics given the physical conditions on the boundary of S  throughout its life-time (I 

will say more about this shortly).

In a second step, the fact that the automaton might be in the same computational 

states at different times in a particular run has to be accounted for. This is achieved by 

defining yet another kind o f state, call them “correspondence states”, by taking (possibly
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infinite) disjunctions over interval states according to the machine table.33 Being types o f 

interval states, correspondence states—as their name suggests—can then be mapped l-l 

onto automaton states such that the following holds: if the physical system is in 

correspondence state A and the machine table contains a transition from automaton state 

A to automaton state B , the physical system will transit (according to the laws o f physics) 

into correspondence state B, i.e., it will “realize” the machine table of the automaton. 

Note that correspondence states are considered “legitimate physical states” by the 

physical theory.

Automata state type

Correspondence
type 12:00 12:01 1 12:02 12:03'

F igu re  3.2 Correspondence states are defined as sets o f  maxim al states 

o f  all physical states w hich correspond to the sam e autom aton state 

resulting in an isom orphic m apping betw een correspondence and 

autom ata state types.

Although Putnam gives no explicit definition of what it means to “realize” (the 

machine table of) an automaton, a definition can be directly extracted from his proof:

Definition 3.2: A physical system S  realizes n computational steps of a FSA without input 

and output within a given interval Int o f  real-time if  for each state in the FSA there exists

33 The details of how correspondence states are defined depends on the particular machine table. Roughly, the n-th 
interval state in the sequence o f  real-time intervals will become part of correspondence state A, if  the automaton is in
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one correspondence state of S  and a division of Int into n subintervals such that: if the 

FSA at the A-th step (l<=fc<n) is in state A transiting to state B in the &+l-th step and the 

physical system is in correspondence state A during the Ar-th subinterval of Int, this causes 

it to transit into correspondence state B in the &+l-th subinterval of Int.

Another way of ensuring the correspondence of correspondence states with automata 

states is to claim the existence of a bijection (i.e., a reversible one-to-one function) 

between those two kinds of states (which might actually come closer to what Putnam 

might have had in mind, see also Chalmers, 1996):

Definition 3.3: A physical system S  (described in a theory P) realizes n computational 

steps o f a FSA without input and output within a given interval Int of real-time if there 

exists a l- l  m apping/from  automata state types onto physical state types of S  and a 

division of Int into n subintervals such that for all automata states q, p  the following 

holds: if q^>p is a transition in the automaton from the Ar-th to the £+/-th computational 

step (K=k<n) and S  is in state fiq)  during the k-th subinterval of Int, then this will 

“cause” S  to change into state fip ) in the A+l-th subinterval o f Int.

Given this definition,34 Putnam’s result reads as follows:

state A after n computational steps.

34 More interesting than the actual phrasing o f  the theorem is the striking structural similarity o f definitions 3.1 and 
3.2. In fact, Putnam notices at some point, that the notion “psychological” theory in his (and Lewis’) account simply 
replaces the computational formalism in the standard version o f functionalism (see Putnam 1988, p. 99). And, indeed, 
it makes no difference to Putnam’s argument if one speaks o f the realization o f a psychological theory or the 
realization o f a computation as long as both involve states and transitions between them (in the former case “mental 
states”, in the latter “computational”)—see also chapter 4, section 3.
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Theorem 3.4: (Putnam’s Realization Theorem) There exists a theory P such that for every 

ordinary open system S, for every finite state automaton M  without input and output, for 

every number n o f computational steps of the automaton M, and for every real-time 

interval Int (divisible into n subintervals) S  (described in P) realizes n computational 

steps of M  within Int.

Putnam’s own diagnosis of what went awry to make this construction possible points 

to the liberal formation of physical states/state types: in order to avoid this kind of 

counter-intuitive result we “[...] must restrict the class of allowable realizers to 

disjunctions of basic physical states [...] which really do (in an intuitive sense) have 

‘something in common’” (Putnam, 1988, p. 100). In restricting the choices of physical 

states (that are supposed to correspond to computational states) to “natural” states which 

really do have something in common, one must not, however, involve “higher level” 

properties if the system is to exhibit these properties by virtue of its particular physical 

states; or in Putnam’s words (who discusses the same problem for propositional attitudes, 

which are supposed to be reduced to physical-computational states):

“ [ ...]  this ‘som ething in  com m on’ m ust itse lf be describable at a physical, o r at w orst a 

com putational level: i f  the disjuncts in a disjunction o f  m axim al physical states have 

nothing in com m on that can  be seen at the physical level and nothing that can  be seen at 

the com putational level, then to  say they ‘have in com m on that they are all realizations o f  

the propositional attitude A \  w here A  is the very  propositional attitude that w e w ish to 

reduce, w ould  ju s t be to c h e a t"  (Putnam , 1988, p. 100)
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33  Weak Spots in Putnam’s Construction

The main implication of Putnam’s proof for the current enterprise is that without 

restricting the formation of physical state types a direct correspondence between physical 

states and machine states can always be found. Implementation viewed as such a 

mapping, however, cannot single out interesting physical systems as “computers”, since 

the class of finite state automata without input and output coincides with all physical 

systems describable at the level of physical fields under this notion.35 As a consequence, 

this result—if true—would provide strong evidence against the tenability of a theory of 

implementation that is built upon the definition of physical states.

Intuitively, however, instead of believing in the applicability of Theorem 3.4, it seems 

safer to assume that something fundamental must have gone wrong. The most 

conspicuous place to look for a flaw is in the arbitrariness of the definition of physical 

state types (the correspondence states of the physical system). Since this turns out to be 

the most refractory and challenging deficiency of a “state-based” theory of 

implementation, I will address this issue in chapter 4 in great detail. In the meantime, I 

will try to strengthen the above result to exclude some prima facie criticisms.

One obvious problem is that the kind of automaton used in the theorem lacks any 

input/output interaction, and it is not quite clear what such an automaton is supposed to 

do at all! Usually, in automata theory, a FSA A is defined as a quintuple <Q,£,$,qQyF> 

where Q is the set of states, I  the input alphabet, 5  the transition function from states and

35 There are various extensions of Putnam’s result that limit the range o f  possible responses: it can be proved for finite 
state machines with input, for Turing machines with only input, for state machines with (countably) infinitely many
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inputs to states, q0 the start state, and F  the set of final states.36 The state table, as 

exhibited by 8, defines for each state in Q all possible transitions to other states 

depending on the current state and the current input (transitions can be made without 

reading input, too, or more transitions can be defined for the same input and state— in that 

case the machine is called “non-deterministic”). Starting in the single start state q0, the 

automaton changes states according to its input and state table until it either “blocks” 

(i.e., reaches a state where it cannot make any transition according to the state table) or 

reaches a final state (in which case it is said to “accept the input”). It is obvious that the 

input plays a crucial role in the behavior of the FSA. What the FSA does ( - ‘computes”), 

is determined by the set of input strings that the FSA accepts. Now, if input is left out 

completely, the whole notion of “accepting an input” is taken away from the FSA, every 

such FSA always accepts only one “input”, i.e., no input—the empty string e. Such a 

FSA can only follow a predetermined trace of transitions through the state table. 

Depending on whether non-determinism is allowed or not, the FSA will either have 

multiple paths through the directed graph defined by the state table or only a single path 

where every step is determined and predictable without any additional knowledge about 

“external” factors. It seems that Putnam must have had the deterministic case in mind, 

since his construction would not work in the non-deterministic case: to see this simply 

assume that there is a computational state that has two different successor states, 

eventually leading to two different computational paths. Putnam’s mapping, however,

states, and, finally, for state machines that can read countably infinite strings o f characters, see Scheutz (1997), some 
of those results I will discuss here and in section 3 of chapter 4.
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only maps one computational path on the “temporal evolution” of the physical system. 

Therefore, a modification would be required to account for non-determinism. Note that 

the lack of branching is exactly the reason why Putnam’s automata cannot have input or 

output, as different input states might require branching and thus might lead to different 

computational paths.

If all we require of a “computational physical system” is to follow a single sequence 

of inevitable state transitions, then Putnam’s theorem does not come as a surprise: it 

seems always possible to map a sequence of states (from a finite set) onto integers, where 

each integer corresponds to a state in a physical system (given certain assumptions on 

physical systems as pointed out by Putnam); simply take the index of the automata state 

in the sequence as the value of the mapping (the /-th state is mapped onto /)—a similar 

construction has been already pointed out by Stabler (1987) before (see the last chapter): 

by going through a natural sequence of physical states (one that is defined and determined 

by the laws of physics), every physical system realizes every input-outputless automaton.

What can be concluded from this for cognitive science, even if  one agrees with 

Putnam’s understanding of computation? Probably not much more than that input- 

outputless automata are not an appropriate formalism for describing cognitive systems— 

but that seemed clear in the first place. In order to get more interesting behavior, 

Putnam’s construction needs to be extended to allow at least for conditional branching 

within the state transition graph of the automaton. If transitions of the automaton do not

36 Sometimes, if the automaton is also required to produce output, another component, the output alphabet Z’, is 
added and 8 is defined correspondingly as a function from states and inputs to states and outputs, see Hopcraft and 
Ullmann (1979).
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solely depend on the current state, but also on the current input character, one would 

expect the “causal structure” o f the underlying system to be more complex.

Chalmers (1996) argues that Putnam’s construction does not obey the right kind of 

state-transition conditional. What is required, in his view, is not that “on all those 

occasions in which the system happens to be in state p  in the given time period, state q 

follows.” (p. 312) Rather it is required that “1/  the system were to be in state p, then it 

would transit into state g”(p. 312). In particular, Chalmers mentions multiple start states 

and transitions between states that are unreachable from a given start state, a possibility 

which is not reflected in Putnam’s construction. Although in the case of one start state 

both of the above requirements amount to the same, this is not true for multiple start 

states, because then Putnam’s construction would only exhibit a mapping between a 

single “trace” through the state table graph (from one start state) as opposed to a mapping 

of the whole graph. More generally, it is not true for machines where the computational 

trace through the state table depends on “external” factors, that is, on input. For those 

machines, it seems, not only a particular computational trace, but the whole internal 

structure would have to be reflected in the physical system in order to account for ail 

“possible inputs” (whatever “possible inputs” may be—this itself is far from being 

unproblematic).

Putnam acknowledges the fact that his construction does not work in general for 

automata with input and/or output (1988, p. 124). But he argues that one could still 

interpret a physical system S  that allows for inputs and outputs as being an abstract 

machine with input and output using his construction as follows: suppose M  is a FSA 

with I/O. Then i f  I  happens to be the input to S  at a certain time tn and O its output at a
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later time one can set up a mapping between concrete and abstract inputs and outputs 

in addition to specifying all “inner states” o f S  (as before) such that the physical system 

realizes M  (Putnam, 1988, p. 124). In particular, it follows that “behaviorism can be 

reduced to functionalism”, since “inner states” do not matter: every system with inputs 

and outputs can be interpreted as having the right kinds of inner states as long as it gets 

the I/O mapping right.37

While this is a valid statement, the statement it follows from (namely that S  realizes 

M) is not true. S  could still fail to realize M  in general, as the above only guarantees that 

it realizes a particular run of the abstract machine. The structure of the abstract machine 

might not be “mirrored” in the physical, in fact, it might only exhibit the same 

“input/output”-behavior for this particular input/output pairing. This is Chalmers’ main 

critique of Putnam’s construction, which he shares with Chrisley (1994). Both argue that 

Putnam confuses particular runs of computations on certain inputs and realizations 

thereof with realizations of the “structure of the machine” for all possible inputs.

Necessarily, these arguments involve a notion of “counterfactual” or “modality” to be 

able to account for non-actual, that is, counter-factual behaviors o f the physical system. 

But this is exactly what Putnam views as highly problematic. The big question, therefore, 

is whether a counterfactual based notion o f “realization of a computation” does create 

more problems than it can actually solve (I will briefly attend to counterfactuals in section 

4 o f chapter 4).

One easy way of dismissing merely counterfactual-based charges is to show how 

Putnam’s Realization Theorem can be strengthened in such a way that it applies not only

37 Compare this to what has been said about “inner states” in dynamical systems in chapter 2, section 4.
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to particular runs of an automaton for a given input, but to all possible inputs o f the 

automaton.

Since automata with input and output can be simulated by an automaton with only 

input using input/output pairs o f  the former as input for the latter, it suffices to prove the 

theorem only for automata with input:

Theorem 3.5: For every ordinary open system S, for every finite state automaton M  with 

input, for every real-time interval Int, and for every input string w, S  realizes |w| 

computational steps of M  within Int (for the given input).

Sketch o f  proof: Consider any ordinary open system S during an arbitrary interval of real­

time Int and any finite state automaton M  with any input string w. Let the surface of S 

(=its boundary) or part of the surface be the “input region”.38 Note that the 

environmental conditions on the boundary throughout Int specify the input that S  will 

receive. By the Principle o f  Noncyclical Behavior, “the state of the boundary of such a 

system is not the same at two different times” (Putnam, 1988, p. 121). Then define 

interval states not only for the interior, but also for the boundary region in the usual 

manner (so we get two kinds o f interval states, internal and input). For the z'-th input (that 

is, the alphabet symbol read on a particular run of the automaton after z'-l computational 

steps), define an input correspondence state for all z‘<=|w|. The same needs to be done, o f 

course, for the interior correspondence states. Finally, for a particular computation, one 

checks easily that if  the automaton transits from A reading a to B in the z'-th step, the

38 There are problems connected with this move. Chrisley (1994), for example, argues why the boundary o f a system 
cannot be taken as input region, see section 4 o f chapter 4 for a more detailed discussion.
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system S  will be in interior correspondence state A with input correspondence state a in 

the z'-th interval state transiting into interior correspondence state B (according to the 

definition of the correspondence states). So, every physical system will realize every 

finite state automaton with input (where the input device of the automaton is not specified 

physically—compare Putnam’s comment on p. 124).

There is a sense in which the above theorem still only covers a particular trace of the 

automaton, since the logical structure of the argument is: V(inputs) 3(a realization), i.e., 

given a input string a correspondence can be set up such that the system realizes the 

automaton. Hence, in nuce this is the same as Putnam’s argument: realization depends 

on inputs. The order of the quantifiers does not capture the structure of the automaton 

independent from its inputs. It treats automaton a m  input more like multiple (inputless) 

automata each of which follows one trace (in a way, this is exactly what has been done in 

the proof)- To be a genuine extension of Putnam’s construction, the order of the 

quantifiers needs to be reversed, 3(a realization)V(inputs):

Theorem 3.6: For every ordinary open system S, for every finite state automaton M  with 

input, for every number n, and for every real-time interval Int: S  realizes n computational 

steps of M  within Int for every input string w such that \w\-n.

The main difference between theorems 3.5 and 3.6 is that we cannot use information 

about the z'-th input character in establishing the mapping from physical states to automata
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states: we do not know what the /-th input is going to be. Notice, however, that in the 

previous sketch of the proof, when we set up a correspondence between the z'-th input 

character and the z'-th input state, we did not care what the particular nature o f  the i-th 

input was either. To set up the required mapping, it was sufficient to refer to the z'-th 

input by using the term “z'-th input”. In other words: whatever state the physical system is 

going to be in the z'-th interval of Int (that is, the z'-th interval state), this state will get 

mapped onto whatever z'-th input the automaton will received. Therefore, the proof o f the 

last theorem was something stronger than required—it was actually a proof of this 

stronger theorem. All that is needed to prove the stronger version is to fix the reference 

to times and inputs at certain times— if the z'-th input character is “a”, “a” and “z'-th input” 

are co-referential. And this was already done in the previous case.

It is very likely that people like Chalmers or Chrisley would still not be convinced by 

the above argument. They would probably find flaws in the way the mapping is 

established, they might disagree with the way reference to the z'-th input is fixed, or 

criticize the involved notion of causality. And surely, nobody would claim that the above 

result really does give a satisfactory account of the realization of a computation. 

However, what the whole exercise o f extending Putnam’s construction was thought to 

show is a very simple point: contrary to the beliefs of some who dismiss the problem of 

“state formation” as not significant (see, for example, Chalmers 1996) the cause of 

“universal realization” might not be the nature o f the state transition conditional, or the 

nature o f the involved notion o f causality, because the above extension o f Putnam’s
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construction, I would claim, does not share this deficit.39 A flaw retained in the above, 

however, is the definition of rather “arbitrary” physical states by fiat. Therefore, it might 

well be the nature of these bewildering physical states that is responsible for all the 

intellectual turmoil.

3.4 Searle’s New Argument

Searle has been criticizing computationalism since the beginning of the Eighties. His 

first argument was aimed directly at strong AI, the view that “the mind is to the brain, as 

the program is to the computer hardware” (Searle, 1984, p. 28). Searle, being a firm 

opponent of strong AI, presented various rebuttals of this doctrine, the most famous of 

which is his heavily debated “Chinese room” thought experiment (see, e.g., Searle, 1980 

or Searle, 1984). The argument rests on the assumptions that 1) programs are formal 

(syntactical), 2) minds have content (semantic content), and 3) that syntax itself is neither 

identical with nor sufficient by itself for semantics. According to Searle, it clearly 

follows from these premises that programs are neither sufficient for nor identical with 

minds, thereby refuting strong AI.

As conclusive as this may sound at first glance, that is, even under the assumption 

that the reasoning is valid, it can still be doubted that all the premises are true. And, as it 

turns out, much of the truth o f the first assumption depends on how one interprets the 

notion “program” (see, e.g., Melnyk, 1996). But one does not even have to go that fan to 

conflate the notions of “program” and “process”, i.e., not to distinguish between

39 In chapter 4, a formally precise version o f  the above proof sketch will be presented together with an analysis of 
potential points o f critique.
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computer programs and the computational processes they give rise to, is to commit a 

category mistake! It means to view the mind, something that is clearly a real-world 

process (presupposing one is not committed to any form of substance dualism), as a 

program and not as specified by a program. Nobody, I think, would make the claim that 

mind is a program (“is” read as “is identical to”): if  minds were to be on a par with 

programs, i.e., if the term “mind” could be legitimately compared to the term “program”, 

then minds would be static, formal objects too— which seems totally absurd. Rather, 

people in strong AI would claim that minds can be specified by programs (i.e., “is” in the 

sense of “give rise to”). Thus, the first premise o f Searle’s argument should read 

“computational processes are formal”, but that does not seem right anymore (e.g., Smith, 

1996, p. 33-34).

While programs specify processes and are thus abstractions, processes in turn are 

concrete, real-world phenomena by virtue o f which they can be “about” something. In 

other words, programs and their components (such as variable symbols, constant 

symbols, procedure names, comments, etc.) derive their intentionality from that of the 

programmer, for whom they are meaningful, whereas computational processes qua 

process, I would argue, can posses original intentionality (in Haugeland’s terms). Just to 

give a quick example, a printing process does print n copies o f my paper and not V  

copies; or email sent to my address gets delivered to mscheutz@indiana.edu and not to 

‘mscheutz@indiana.edu’.

While computational processes need not have semantics (although it is hard for me to 

imagine a process being entirely syntactical—it seems to me that syntax is confined to 

descriptions o f such processes), they certainly have the possibility and potential for
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original intentionality (in the sense that it can be directly about something without the 

need of a human mind as mediator). Note that the claim that a process has original 

intentionaliy is stronger that saying it has semantics as the latter might just be attributed 

or derived.

Much has been written on Searle’s Chinese room argument and its problems (see 

Hofstadter, Dennett, Fodor, Pylyshyn, Lycan, Haugeland et. al. in Brain and Behavioral 

Science, 1980), but in my view most of these criticisms are secondary. The first and 

foremost fallacy, I would claim, is the conflation between the specification of a process 

and the process proper. Instead of “Is the mind a computer program?” Searle should have 

asked “Is the mind a computational process?” (there are indications in his most recent 

writings that Searle might be more aware of this distinction—see his 1998).

Naturally the above reply is very brief and would need further, much more detailed 

discussion. However, I will not attempt such an elaboration o f my critique of Searle’s 

first argument here, since Searle has advanced another argument more recently, which is 

more pertinent to the present enterprise. In his book The Rediscovery o f  Mind, Searle 

(1992, p. 210) augments the “Chinese room” thought experiment by the claim that a 

physical system’s physical properties do not suffice to determine its syntactic properties. 

Syntax has to be assigned to a physical system, and this assignment, according to Searle, 

is arbitrary: “If computation is defined in terms of the assignment o f syntax then 

everything would be a digital computer, because any object whatever could have 

syntactical ascriptions made to it” (Searle, 1992, p. 207). In other words, whether or not 

a physical system is “implementing” (or better, realizing) a program depends solely on 

one’s interpretation of that system:
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“O n the standard definition [ ...]  o f  com putation it is hard to see how  to avoid the 

following results:

1. For any object there is som e description o f  that object such that under that 

description the object is a  digital com puter.

2. F or any program  and for any sufficiently com plex object, there is som e description 

o f  the object under w hich it is im plem enting the program .

Thus for exam ple the wall behind m y back is right now  im plem enting the W ordstar 

program , because there is some pattern o f  m olecule m ovem ents that is isom orphic with 

the form al structure o f  W ordstar. But i f  the wall is im plem enting W ordstar then i f  it is a 

big enough w all it is im plem enting any program , including any program  implemented in 

the brain” (Searle, 1992, p. 208-209)

The core of Searle’s view is thus: the standard notion of computation (i.e., Turing 

computability) is not suitable for describing minds, since one can always find a suitable 

interpretation of a computation under which a given system realizes this computation. 

This has not only fatal consequences for strong Al, but for any view maintaining that 

minds can be described computationally; in particular, computationalism, cognitivism (in 

Searle’s terms), and various forms of functionalism are at stake. It, therefore, does not 

come as a surprise that Searle’s attack aimed against main stream cognitive science 

created hefty reactions, most o f which tried to find faults in his reasoning.

Unfortunately, Searle himself does not flesh out his intuitions about the 

“arbitrariness” o f the “physical realization of computations”. Only a few remarks show 

how he intended to go about proving that every physical system “implements every 

computation”, an argument structure similar to that o f Putnam: assume the “received
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view on physical realization of a computation” and show that it leads to unacceptable 

results. Therefore, the received view needs to be revised if it is to be o f any use for 

computer and/or cognitive science.

Fortunately, a quite succinct formal (re)construction o f Searle’s ideas is provided by 

Copeland (1996), a defender of the “traditional theory of computation”. Sharing with 

Searle the commitment to the received view of computation, Copeland in his What is 

Computation? not only formalizes Searle’s intuitions, but also points out their 

shortcomings, an argument that will be reviewed in the next section.

3.5 Copeland’s (Reconstruction of Searle’s Theorem

Copeland’s strategy to rebut Searle’s view of “universal computation” is two-fold: first he 

reformulates Searle’s two above-mentioned theses (Searle, 1992, p. 208-209) as a 

theorem, which he baptizes “Searle’s Theorem”. From the (sketch of the) proof of 

Searle’s theorem it is then apparent where the intuitive notion of implementation has to 

be altered, since a “naive view” on program implementation does indeed make Searle’s 

theorem true. The presentation of Searle’s theorem is followed in a second step by 

Copeland’s own analysis of what went wrong in the construction. He localizes the 

shortcomings in a non-standard interpretation o f theoretical terms that are thought to 

describe the architecture of a computational system. Excluding non-standard 

interpretations of theoretical terms formally describing “algorithms and their 

corresponding architectures” (in a sense to be specified in the following) is what, in 

Copeland’s view, ultimately can block unwanted conclusions such as Searle’s “the wall 

behind my back is right now implementing the Wordstar program”.
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The driving force behind Copeland’s analysis o f  what it means for an entity e to 

compute a function / i s  his conviction that “[...jto compute is to execute an algorithm” 

(Copeland, 1996, p. 335). While this may seem too severe a restriction o f the notion of 

computation to some (if not from a theoretical, then at least from a practical point o f 

view), in the context of our evaluation of Searle’s theorem it does not matter, as Searle 

would not be opposed to it. What does matter rather is Copeland’s formal clarification 

and definition of the notion “e com putes/’:

‘T o  say that a device o r organ com putes is to say that there exists a m odelling 

relationship o f  a certain k ind between it and a formal specification o f  an algorithm  and 

supporting architecture. The key issue is to delim it the phrase ‘o f  a certain k ind’” 

(Copeland, 1996, p . 335).

Note that Copeland attempts a comprehensive account of implementation, where 

“entity e” is not co-extensive with “physical system”. Rather, entity e could be “real or 

conceptual, artifact or natural” (Copeland 1996, p. 336). What matter is that it can be 

formally described by a specification SPEC as an architecture together with the formal 

specification o f an algorithm a  for that architecture. For example, the blueprint o f a PC 

together with an addition program written in 486 assembly language would constitute a 

formal specification SPEC in Copeland’s sense.

Copeland then asks: “So on the one hand we have SPEC, a description o f a machine, 

and on the other we have an entity e. How do we bridge the gap and say that e is such a 

machine (at the time in question)?” (p. 338) And he immediately answers: “The bridge 

is effected by means of a system of labelling for e”, which is a way o f assigning labels (to

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

parts of e) “that constitute a ‘code’ such that spatial or temporal sequences o f labels have 

semantical interpretations” (ibid.).40

Definition 3.7: A labeling scheme L for an entity e consists of two parts:

1. the designation o f certain parts of e as label-bearers

2. the method for specifying the label borne by each label-bearing part o f e at any given 

time

Note that nothing is said about the nature of the relation between labels and parts of e. 

One would assume that it has to be restricted to some sort of functional correspondence, 

otherwise the term “label” would not be appropriate. Furthermore, the set o f methods of 

specifying labels for each label bearer needs to be confined to effective methods, 

otherwise this would defeat the purpose o f using a labeling scheme in the first place 41 

This last deficit could be eliminated by explicitly requiring that there be only finitely 

many label-bearing parts (as finitely many labels can always be assigned to finitely many 

parts effectively).

Obviously, there is a minimal requirement that each labeling scheme for a given 

formal specification SPEC has to satisfy, if it is to “model” the formal specification 

correctly: it must have enough different labels for all (non-identical) constants of SPEC

40 Note that introducing a notion like “labeling scheme” for parts o f  the system is required if  one wants to establish a 
correspondence between formal, theoretical terms (describing parts in the computational architecture) and “regions” (in 
real, physical space-time or another abstract topology).

4 * If non-effective labelings were permitted and the system had “infinitely many parts”, then it seems possible to label 
parts in such a way that the entity e can compute “non-computable” functions (to provide an exact answer, however, 
one would have to first pick a system with infinitely many parts together with their causal relationships....).
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such that the latter can be mapped onto the former (this, in turn, requires the system to 

have “enough parts” to be labeled). Such a mapping between the constants of SPEC and 

the labels is the prerequisite for the definition of general truth-conditions relating SPEC 

and e such that it is meaningful to ask if  e is a model o f  SPEC. Note that a truth- 

definition for SPEC crucially depends on the formal language of SPEC (in particular, on 

the logical and non-logical symbols, the way of combining them, etc.). Copeland 

downplays the importance of this issue somewhat by cryptically remarking “For 

definiteness, let SPEC take the form of a set of axioms, although nothing in what follows 

turns on the use o f the axiomatic method as opposed to some other style of formalisation” 

(Copeland, 1996, p. 337-338). In fact, he does not provide any details regarding the 

nature of the minimal logical requirements of SPEC, although his critique of Searle’s 

Theorem assumes that a connective like “ACTION-IS”, which indicates a state change in 

the computational architecture and has to be interpreted in a very particular way, be part 

of SPEC.42 While a serious truth-definition can only be provided if the language at hand 

is clearly defined and the interpretation of all involved predicates and connectives (such 

as “ACTION-IS”) is completely determined, I will simply assume with Copeland that this 

can be done for a given formal specification SPEC. Again, the minimal logical structure 

of SPEC would be crucial to a general theory o f implementation. For our purposes, 

however, this incompleteness of Copeland’s sketch is a minor glitch, as we will focus in 

the following on a very specific formal system.

42In fact, Copeland argues that ACTION-IS, if  it is supposed to capture the notion o f state change or state transition, 
cannot be defined as material implication (in the sense, that “if  the system is in state q, then it will go in state p”). 
State transitions, in his view, have “modal force”, see also the end o f this section.
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If the truth-conditions for sentences o f the language o f SPEC with respect to the 

labeling scheme L (for an entity e) can be given, i.e., if the notion “(p is true of e under L” 

is defined for all sentences cp in SPEC, then the notion “model of SPEC” can be formally 

expressed:

Definition 3.8: Let SPEC be a formal specification, e be an entity, and L be a labeling 

scheme for e. Then the pair <ef>  is a model o f  SPEC iff every sentence of SPEC is true 

of e under L.

Copeland uses the notion “model o f SPEC” to define formally what it means for an entity 

to compute a function:

Definition 3.9: An entity e is computing function/iff there exists a labeling scheme L and 

a formal specification SPEC (of an architecture and an algorithm specific to that 

architecture, which takes arguments o f /a s  inputs and delivers values off  as outputs) such 

that <e,L> is a model of SPEC.

Unfortunately, the above definition conflates “computation” and “implementation” 

subsuming both under the notion “is computing” (see also chapter 4, section 2). Instead, 

it should and can be broken down into two parts: the relation between e and SPEC (which 

is established by virtue o f the labeling scheme L) and the relation between the algorithm 

part a  o f SPEC and f  To see this, we need to make details o f the algorithm such as the
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relation between its inputs and outputs explicit. The notion “the function computed by an 

algorithm” can be used to distill the abstract input-output mapping /  from the specific 

algorithm a  for the given architecture SPEC (obviously it is assumed that a  be 

deterministic). While the model-relation (definition 3.7) holds between <eJL> and SPEC, 

the latter accounts for the relation between the a  part of SPEC and/  (would this be the 

“computation”-relation?). Therefore, to say that e is computing function/is to say that e 

implements SPEC and the algorithm part a  of SPEC computes function /  This 

distinction together with definition 3.8 clearly exposes Copeland’s view of 

implementation as that of semantic interpretation.

Note that there are other reasons for separating descriptions o f computational 

architecture from those of algorithms that can run on them. One, which I find especially 

important, is the possibility of identifying two systems as being the same kind of 

computer. In order for such an identification to work, an architecture description is 

needed that is silent on algorithms that could be implemented. Since there is a many-to- 

one relationship between architecture and algorithms (the reverse is obviously true too), 

different algorithms can run on the same architecture. Therefore, using a pairing of 

architecture and algorithm, one would have to have some means of separating 

architecture description from algorithm in a given SPEC—this could have been avoided 

by keeping them separate in the first place. Another is that in order to evaluate Searle’s 

claim one should not need to know what function the algorithm part specifies, it should 

suffice to show that the physical system implements the architecture!
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Despite mingled terminology, Searle’s Theorem can now be stated precisely as 

follows:

Theorem 3.10: (Searle’s Theorem) For any entity e (with a sufficiently large number of 

discriminable parts) and for any architecture-algorithm specification SPEC there exists a 

labeling scheme L such that <ej>  is a model of SPEC.43

In more intuitive terms, Searle’s theorem states that every object can be “interpreted” 

as implementing any given computational architecture.44 To allow for such an 

interpretation eventually boils down to exhibiting the “right” labeling scheme, which, in 

turn, requires that the “right” parts o f  S  be singled out as label bearers in a systematic 

manner. One general method for finding the “right” parts in any structure (which does 

not depend on the peculiarities of the system under scrutiny) can be derived from 

Putnam’s construction—I will describe it in the next chapter, another can be found in 

Copeland’s proof sketch of Searle’s theorem.

To see how that the wall behind me implements the Wordstar program, assume a 

formal specification VNC (of a von Neumann computer, for example) is given together 

with the algorithm o f Wordstar (written for that architecture), o f which the following 

algorithm fragment is a short piece:

43 Note that for Searle the entity e is a physical system.
44 Whenever I presented a version o f Searle’s Theorem to an audience, people immediately sensed that something 
must be wrong with this result, or otherwise—as somebody once put it—“computer dealers would be selling walls”. 
Obviously, the real challenge is to find and explicate the defects in its proof.
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LD B, #10 

LD C,#20 

ADD A, B, C

This simple program loads the values 10 and 20 into registers B and C, respectively, adds 

them and stores the result in register A. One would like to define a labeling scheme L 

such that a particular wall (the one right behind me, for example) under L is a model of 

VNC. To do this, one needs to single out parts of the wall that are supposed to 

correspond to the three registers in VNC, call them “wall states”:

"The first thing to be done is to  settle on a w ay o f  correlating binary num bers with 

physical structure. Let’s sim ply grant Searle [...] a method that enables one to correlate 

binary num bers with regions o f  w hatever physical object is in question. For instance, if  

the wall has a high polym er content then the following simple m ethod can be used: when 

the num ber o f  polym er chains that end in a given space S is odd the S tokens 0, and when 

the num ber is even S tokens 1” . (Copeland, 1996, p. 343)

Then one records the states o f  all registers in an actual von Neumann computer while 

it is running Wordstar for n computational steps and relates these to labels of wall states 

(as defined by L—see Figure 3.3).
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/(B)=b
/(A)=a

Figure 33  Regions in the wall are singled out to becom e bearers o f

labels (a,b,c), w hich in turn w ill becom e the interpretation (via the 

interpretation function I) o f  constants in SPEC (A,B,C).

That is, for any two consecutive computational steps there will be two consecutive 

intervals o f real-time such that the content o f a particular register corresponds to a 

particular wall state (during the respective interval). Figure 3.4 show the value of all 

registers at each of the three computational steps.

Steps Command Register A Register B Register C

1 LD B, #10 XXX 10 XXX

2 LD C, #20 XXX 10 20

3 ADD A, B, C 30 10 20

Figure 3.4 Com putation in  a real "von N eum ann” CPU: the table 

shows the values o f  all registers at the respective tim e-steps (values 

reflect the states o f  the registers after the com m and has been executed).

*xxx’ indicates that the actual value does not m atter.

Without going into details about the formal description of the architecture, it will still be 

helpful to see how one could write formal axioms that describe what the respective
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“machine command” is supposed to do. In our case, we will need axioms for “ADD” and 

“LD” using the connective “ACTION-IS” to describe state transitions. We also assume 

an “instruction register” whose value indicates the current instruction :

IF instruction=“LD ACTION-IS r^rn 

IF instruction=“ADD r j,t"  ACTION-IS r^rs+i

Note that r, s, t are variables for registers, whereas n is a variable for natural numbers.

It is easy now to exhibit an interpretation /  such that all formal states will correspond 

to wall states at any time during the interval [ r / j  (/<*’) under consideration (see Figure 

3.5). Furthermore, the axioms of VNC that describe “state transitions” will be mirrored 

by “wall transitions” under a certain interpretation of “transition”: assume the interval 

under consideration is [8:01,8:03] and let PLUS=dcf« /( s ) ,/ ( r ) t> /(r)t> and 

VALUE=def</i,/(r)t> for all te  {8:01,8:02,8:03}. Then the interpretation of the axioms is:

V/(instruction(r)= “ADD r j , t” z> /(r)t =PLUS(</(s)t>/(f)[>)) 

Vt(instruction(r)= “LD r,#«” r> /(r)t =VALUE(/i)

Hence, the wall will implement Wordstar during [r,/’].
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Time Command 1(A) /(B) /(C)

8:01 LD B, #10 /(xxx) /(10) /(xxx)

8:02 LD C, #20 /(xxx) 410) 4 2 0 )

8:03 ADD A , B, C /(30) 410) 420)

Figure 3.5 Com putation in the “w all CPU” : the table shows the values 

o f  all registers under the interpretation function I  for each interval that 

is m apped onto com putational tim e-steps.

There are obviously quite a few problems associated with this construction, and 

Copeland himself diagnoses three major shortcomings:

1. All computational activity occurred outside of the wall (by recording the activity 

within a CPU of a machine that actually performed the computation), meaning that 

the labeling scheme is constructed (from this record) ex post facto.

2. The labeling scheme involves unwanted temporal specificity (by limiting the wall’s 

computational capacities to the time interval (/,/’], a necessary consequence of the ex 

post facto  nature of the labeling scheme).

3. The interpretation of “ACTION-IS” fails to support assertions about the 

counterfactual behavior o f a real von Neumann computer.

All three problems point to the discrepancy between the “intended” interpretation of VNC 

and the “non-intended” one that turned the wall into a von Neumann computer. This 

discrepancy, according to Copeland, already suggests a criterion to distinguish between
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“real computers” and “pseudo-computers” (such as the wall): real computers compute 

under a standard interpretation of the given architecture specification, pseudo-computers 

do so only by virtue of non-standard interpretations (they could not be viewed as 

computing under the standard interpretation). Thus, by requiring that the interpretation of 

all theoretical terms in the formal specification of the computing architecture plus 

algorithm be standard, one can according to Copeland exclude wall computers and the 

like. This requirement is easily incorporated into Copeland’s definition of computing: 

call a model of SPEC “honest” if it is a model under a standard interpretation. Then for 

an entity e to compute a function/ means to satisfy definition 3.9 and be an honest model.

While one can agree that it is preferable to have models of a formal specification that 

are models under the standard interpretation if possible—since this is what it is to be the 

thing described by the specification in the first place—there are cases when it is not even 

clear what the standard interpretation is. Set theory has an ongoing debate about what the 

standard interpretation o f the Zermelo-Fraenkel axiom system (ZF) is supposed to be 

(should it include non well-founded sets or not, does it allow for choices or not, etc.), one 

reason being that the universe o f sets is underspecified by the axioms. Thus, there are 

mutually exclusive alternatives of extending the system giving rise to incompatible kinds 

of models, which nevertheless are still models o f the ZF. In other words, there is an 

intrinsic problems buried in Copeland’s suggestion o f how one could go about excluding 

“unwanted” computing systems: formal systems notoriously underspecify their model, or 

to put it differently, there are too many interpretations that might legitimately count as 

standard. Consider the description o f a von Neumann computer. It might be realized in 

many different ways in different hardware, which already makes it hard to define
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common properties o f all the different labeling schemes required (in fact, it seems that the 

only commonality will be that these objects are all von Neumann machines, but this is 

obviously not helpful). Still, one could argue that whether a certain object “implements” 

a von Neumann computer can be decided if one is familiar with the von Neumann 

computers, what the terms in their specification mean, etc. But what about objects we do 

not understand well? What about objects we have not built? These objects would be a 

priori excluded from being “computers” as we could not decide whether they were honest 

models of an architecture description—we simply would not know what it means to be a 

standard interpretation of the terms for them. If the position is acceptable that only 

artifacts compute, then Copeland’s solution may be satisfactory. However, if  one wants 

to allow the notion of computation to aid other disciplines such as cognitive science in 

understanding causal relations and laws, the above approach has to be discarded as too 

narrow and underspecified to be of any use.

There are quite a few open issues concerning the three shortcomings of the 

interpretation of SPEC Copeland points out in the proof of Searle’s theorem. I will 

address some of them in the next chapter, when I show that Copeland’s solution does not 

even work for artifacts: assuming that the notion of “finite state automaton” is an 

accepted specification of a computational architecture plus algorithm—it is normally not 

viewed that way, but one can certainly put the notion in this frame—it will turn out that 

everything implements an FSA, simply because the notion of FSA is too general to 

confine the set o f potential realizers!

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3.6 Implications of Putnam’s and Searle’s Theorems

While there have been many attempts to refute Putnam’s and Searle’s theorems, it seems 

to me that the methodological point o f their criticisms mostly went by unappreciated. 

Surely, neither Putnam nor Searle really believe that rocks or walls compute. However, 

they believe, I contend, that the “implementation problem for computations” turns out to 

be more serious than expected and cannot be dismissed easily. Putnam takes this point 

even further and raises the question about the relation between psychological theories and 

their possible realizations. And, indeed, it does not take much to extend this argument to 

any formal theory that contains certain primitive terms (see the next chapter).

Without really acknowledging the transition, we have stepped foot on different 

territory—the realm of metaphysics proper. Questions about the nature of formal theories 

and their relationships to the real world have always been—in different verbal guises 

depending on the terminology en vogue at the time—the center o f ontological and 

epistemological debates. It should not come as a surprise then that computations, too, 

eventually probe sacrosanct philosophical topics. What is surprising, however, is the fact 

that computational practice does not seemed to be bothered by the lack of foundational 

clarity that the above theorems reveal. Alas, the “intuitive notions o f implementation” 

used within computer science seems to be understood well enough to master practical 

challenges. Only when other disciplines borrow the notion of computation and apply it 

within their own domain, the almost systematic ambiguity and fuzziness of crucial 

terminology backfires. Thus, neither psychology nor philosophy, and in particular not
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cognitive science, should build theories on notions that start to crumble under scrutiny— 

so the methodological advice!

Putnam’s and Searle’s theorems show that an “intuitive approach to implementation”, 

one that allows for “arbitrary” assignments of syntax to physics (Searle) or for the 

establishment of a mapping between arbitrarily chosen physical and computational states 

(Putnam), gives way to the pressure of analytical inspection. Yet, these somewhat 

exaggerated results do not do full justice to the intuitive notions of implementation, 

mainly because these notions are limited to the domain of applied computer science, and 

it was not the computer practitioners who pulled them out of their context. In a sense, 

computationalists (i.e., people in cognitive science interested in a computational 

explanation of mind) are the truly accused, accused of importing blindly a notion into 

their respective disciplines without reflecting on the implicit assumptions involved in this 

notion: once “computations” are deprived of their “computers”, it is no longer clear what 

other hardware might be a candidate to “implement them”.45

The lesson to be learned from Putnam’s construction, thus, is that as long as there are 

no criteria that distinguish “natural” from “unnatural” physical states, the door will be 

open to “unintended labelings of parts o f a physical system” that are not really “parts” (in 

a common-sense understanding o f “part”). It is not clear at all if  criteria can be 

formulated for arbitrary systems. Rather, I venture to claim, it will be necessary for many 

systems to involve “high level” objects, concepts, and/or properties to describe common

45lnterestingly enough, humans seem to be the appropriate hardware, for simple programs at least, as we can 
“execute” algorithms, i.e., apply them to inputs and determine their outputs. However, this level o f “implementation” 
would be at best called “virtual machine” and correspond to a “macro interpreter” within WORD, which in turn is
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features o f states at a “low level” of description of physical systems, for the simple reason 

that the only thing all these “low-level” states have in common might just be that they 

realize a higher level state or property. Take, for example, a chair. Most people would 

agree that what it is to be a chair cannot be determined at a field theoretic level of 

description. Too many different fields will “implement” chairs, fields that have nothing 

in common qua fields other than that some of their “abstractions” admit o f the same 

higher level description.

If this is so, i.e., that without already assuming common properties at a higher level of 

description, physical states that realize computational states cannot be shown to have 

anything in common at the low level o f physical description, then every theory of 

implementation that is built upon establishing a mapping between physical states and 

computational states would face severe obstacles, to say the least. Deriving 

computational properties o f physical states at a physical level of description seems to 

present almost insurmountable difficulties—it would mean to solve “reversed multiple 

realizability”. Analogous to “multiple realizability”, where the physical properties of 

realization could not be derived from the computational properties (“there are too many 

different realizers”), the same holds true o f “reversed multiple realizability”: 

computational properties cannot be extracted from physical states, because there are too 

many possible computational abstractions.

Before concluding this chapter, I would like to point out the intrinsic connection 

between Putnam’s construction of “state types” and Copeland’s labeling scheme. Above

implemented by a different program (the WORD program), etc. Computationalists make the specific claim that there is 
a level “lower than conscious execution o f algorithms” at which the brain performs computations.
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I alluded to Putnam’s strategy of constructing state types by “unintended labelings of 

parts o f a physical system”. Note how this way of putting Putnam’s strategy blends with 

Copeland’s idea of a labeling scheme, the reason being that “labeling parts” or “defining 

physical states” are merely two sides of the same coin. To single out space-time regions 

of a physical system for all times and tag them with a label is really not different from 

defining space-time regions as states. Both approaches need physical criteria to specify 

space-time regions. Both approaches refer to the so-specified space-time region. They 

only differ in the way they refer to them. The former uses a name (i.e., the label), 

whereas the latter uses the mathematical description of the physical theory such as a set 

o f field values (i.e., the state). In either case, parts of a physical system are related to a 

computational description via a correspondence function: in Putnam’s case it is the “type- 

formation”, in Searle/Copeland’s the “semantic interpretation”. The next chapter will 

make this connection even more apparent.
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Chapter 4:

The Alleged Rehabilitation of Computationalism

4.1 The Stakes are High: Two Ways to Rescue Computationalism

Computationalism, despite all its weak spots and flaws, still dominates cognitive science. 

It seems that there is no better alternative within sight, even though some dynamic 

systems people are advancing vehemently and forcefully their new credo (see van Gelder 

& Port), which has already proved very promising in certain areas of research (see Port, 

Kelso, Smith & Thelen, Townsend & Busemeyer). Exactly because computationalism has 

served cognitive science well over the last forty years, in particular the area of artificial 

intelligence, many people are not willing to give up their fundamental convictions easily; 

especially not for philosophical arguments which, in their view, only allegedly render 

computationalism untenable (considering the absurd consequences of arguments such as 

those advanced by Searle and Putnam).

Once one has analyzed the charges held against it, there are basically two non­

exclusive ways to defend computationalism: one is to keep standard notions of 

computation and try to explain how these can be related to the physical in a non-trivial 

and meaningful way. In fact, every computer practitioner has an intuitive understanding 

o f how computations are related to the real world. This is what a practitioner’s job is all 

about, to establish meaningful relations between abstract specifications and their physical 

realizations in order to accomplish practical goals. Hence, the first option is to attempt a
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revision of the notion of implementation (preferably in accordance with practial 

experience).

The other, which is also motivated by reflecting on computers and computations in 

their practical, real world settings is to abandon the idea that standard conceptions of 

computation (such as Turing computability) are the ones capturing all crucial aspects o f 

computation. As a consequence, a new notion of computation will have to be introduced, 

which takes computation as a real-world phenomenon seriously. Turing-computability 

will then be viewed as capturing only one aspect, namely the theoretical formal aspect of 

this new notion that embraces daily life routines and computer applications as well as 

logical, foundational results. Consequently, the reconstruction o f computation will also 

give rise to an appropriate notion of implementation, or so it is hoped. Since I believe 

that this latter option is the only viable one, I will postpone a discussion of proposals to 

rescue the notion of computation along these lines for the time being.

Adherents of the former camp have attempted to salvage the classical notion of 

computation by explaining how one should go about defining an appropriate notion of 

implementation, which is invulnerable to Searle and Putnam style objections. This 

endeavor could be approached from two different directions: 1) one can view the relation 

between computation and computer as that of an interpretation that holds between formal 

elements o f  a theory and (formal) logical models o f (physical) systems, or 2) one can try 

to avoid the “semantic route” by establishing some sort o f direct correlation between 

computational and physical states. Note that whereas the former is essentially an 

observer-dependent view of implementation (as it relies on the assignment o f an 

interpretation function), the latter is somewhat objective. It should allow one to give a
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definite answer to the question what computation a physical system implements. The 

former, which I will call the “semantic interpretation view of implementation” (SV), is, 

for example, suggested by Copeland (1996), whereas Chalmers (1994,1996) is a 

proponent o f the latter, which I will refer to as the “state-to-state correspondence view of 

implementation” (CV).

While SV and CV might seem similar at first glance, as one could argue that setting 

up a correspondence between computational and (given) physical states is analogous to 

interpreting computational states (over a given structure), this similarity disappears when 

one looks at it through metaphysical glasses (without making commitments as to the 

nature of the interpretation): SV is essentially an epistemological approach in a pragmatic 

guise as it is not concerned with the nature of the relation between computational and 

physical states; rather it emphasizes the way these states can be viewed (for whatever 

practical reasons). CV, however, makes ontological claims about the nature of 

computational states; for example, that they are certain physical states (“up to 

isomorphism”), or that they share certain structural properties (under the notion of “state 

transition”) with physical states (“under some notion of causality”).

However, despite their metaphysical difference, I will show in the following that the 

first glance was not so mistaken after all; except that it is not the notion “mapping” they 

share, but the notion “physical state” (which is not to say that they share “physical states” 

themselves—this may or may not be, what they share is the fact that both require the 

notion of “physical state” in order to develop the notion of implementation). That this is 

so and that problems connected with the notion of physical state underlie the SV as well 

as the naive CV (i.e., the “naive” state-to-state correspondence view as criticized by
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Putnam, see definition 3.3), can be shown by exhibiting a counterexample to Copeland’s 

solution to Searle’s theorem, which is essentially based on Putnam’s construction. Since 

it is (naturally) also a counterexample to the standard view on implementation, and a 

fortiori the “(naive) state-to-state correspondence view”, the kinds of physical states that 

haunt the naive CV, also bring down the SV. Moreover, this shows—in my view—the 

common grounds on which Searle’s and Putnam’s criticisms are based, namely the 

problem of physical state type formation: if  physical state types can be chosen arbitrarily, 

then literally everything can be viewed as computing (regardless o f one’s view of 

implementation).

Chalmers, who is one of the few authors to realize the importance of the notion of 

implementation for computationalism, attempted to overcome the difficulties resulting 

from Putnam’s construction in his definition of implementation. While his view, which 

is essentially an instance of CV, does solve some of the problems of the naive CV (that 

was attacked by Putnam), I believe he did not succeed in general, because by taking state 

type formation to be unproblematic, he did not correct the true deficiency.

Obviously, this will require careful attention and I will present a second argument that 

attacks his state-based notion of implementation by using a special kind of physical state 

type formation under which simple physical systems (such as a “battery-light bulb- 

switch”-system) are viewed as implementing arbitrarily complex computations. 

Although not every physical system can be shown to implement every computation under 

Chalmers’ notion of implementation (at least I could not show it), the fact that some 

simple physical systems implement arbitrarily complex computations is still disturbing
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and needs to be accounted for, especially since we would not be committed to attribute 

such computational powers to those systems.

In the end, these constructions are intended to show that despite the obvious 

attraction of the semantic or the state-to-state correspondence views of implementation, 

any such view is not tenable as a foundation for a general theory o f  implementation. This 

is not to say that there are no cases in which some of these views can be employed 

successfully, but rather that they fail to be general enough to serve as foundational 

concepts. What, precisely, prevents this generality is their intrinsic reliance on a notion 

of “physical state”; neither the mapping nor the interpretation function (besides having 

their own problems connected with them) themselves contribute to this deficit, yet they 

cannot make up for it either.

4.2 An Analysis of Copeland’s Solution of the Implementation Problem

Copeland attempted to define very general notions of computation and implementation 

(reducing implementation to a logical modeling relation and computation to the presence 

o f this relation between a formal specification and a description o f an entity) that view 

various kinds o f systems as computers: von Neumann computers, neural networks, 

Turing machines, or finite state automata, just to name a few.

Not only concrete physical systems, but also abstract systems (such as the fictitious 

Turing machine) are subsumed under Copeland’s notion “entity e is computing function 

/ ”. Although one could argue that in order to truly compute something “material” is 

required that does the computing (as abstract entities cannot perform anything'.), which 

would exclude abstract entities e from Copeland’s definition, I find the wording “zs
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computing” more disturbing. For one, the difference between " f  is implemented on e” 

and ‘/  is running on e" (the algorithm specifying/, of course) is completely ignored by 

using the progressive form. In fact, the progressive form is misleading.

It seems that Copeland wanted to capture computational processes “running” on a 

particular architecture in his definition—this would be the “progressive form reading”—, 

while at the same time not being restricted to “(real-world) processes”, the latter being the 

“indicative form reading” (what could it possibly mean to have “a process running” on a 

abstract computational architecture?).

The tension of achieving these two goals at the same time in one definition is what 

blurs the useful ontological distinction between computation (as a formal object) and 

(actual as well as potential) computational process on the other. It does not come as a 

surprise that this conceptual tension finds its formal expression in the very definition of 

“is computing”: while the wording “is computing” suggests that Copeland wanted to 

capture the notion of “computational process” (that which is actually running on a 

computer), the existential quantifier in the definiens (“there exists a labeling scheme L 

and a formal specification SPEC”) hints at the notion “program” instead of “process”; it 

specifies a relation between a formal entity and parts o f a physical entity, yet it does not 

involve a notion of actuality or process; the possibility o f the entity (that is, the system) to 

run a particular program, suffices (i.e., that it is possible to set up a formal relationship 

with the computational description and the description of the entity).46

46Note that a correct reading of Copeland’s definition of implementation is crucial to his first and second objection to 
Searle’s theorem, as they are at best objections under the “program” reading.
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There is another distinction to be drawn between “/ i s  implemented on e" and ‘/c a n  

be implemented on e”: while the first stresses a factual, that is, actual state o f affairs, the 

other involves a notion of modality to allow one to distinguish between architectures cum 

algorithmic description and architectures sine algorithmic descriptions. While for the 

latter specifies a class of functions (i.e., the class of functions /  such that /  can be 

implemented on e), the former should be true of only one /  (the one specified by the 

algorithm part of SPEC).

Another criticism regarding Copeland’s definition of implementation, already 

mentioned in the previous chapter, is the lack of a clear definition of what the minimal 

requirements of a potential language for SPEC are. It seems, for example, that the 

connective “ACTION-IS” or something equivalent would necessarily have to be part of 

it, and with it the specification of its minimal properties (such as counterfactual support, 

etc.). But if  formal state transitions are to be modeled using counterfactual supporting 

connectives, the door will be opened to all kinds of criticism about the nature and 

legitimacy of counterfactuals, a debate that in my opinion should not be part o f a theory 

of implementation.

There are other issues connected to the notion of labeling scheme that are not 

addressed by Copeland: 1) it is not clear how one would go about identifying parts o f a 

system that qualify as bearers of labels, and 2) how one would go about doing this in a 

systematic way. For some people (e.g., presumably Rappaport), this might already be an 

instance of the implementation problem: the labeling scheme viewed as an abstraction 

implemented on entity e! Also, it seems still justified to talk about systems implementing 

certain functions while it is not possible to assign labels to all their parts (e.g., take certain
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analog chips that “compute” the solution to differential equations by exploiting the 

diffusion of potentials in silicon crystals).

For the time being, I shall ignore these difficulties that are a consequence of the 

generality of Copeland’s definition and concentrate rather on two necessary (but not 

necessarily sufficient) criteria, which Copeland suggests to sort out standard from non­

standard interpretations (that is, to distinguish “honest” from other models):

“I suggest two necessary conditions for honesty.

1. The labelling schem e must not be ex post facto. [ ...]

2. The interpretation associated with the m odel m ust secure the truth o f  appropriate 

counterfactuals concerning the m achine’s behavior.

Either o f  these two requirem ents suffices to debunk [ ...]  alleged problem  cases.” 

(Copeland, 1996, p. 350)

Unfortunately, the generality of Copeland’s approach seems to make it impossible to 

eliminate non-standard interpretations, even if one applies these two criteria as in the 

following argument (which extends Putnam’s construction). If the argument goes 

through and it does indeed meet both criteria for “honesty”, then additional criteria are 

needed to single out “intended interpretations” (if this is possible at all).

Theorem 4 A: Every ordinary open system e is a model o f every finite state automaton. 

Sketch o f proof. At this point I will only sketch the main steps o f the proof as it can be 

generalized to cover not only finite state machines, but also psychological theories (in the 

sense of Putnam, 1988) in general (and I will fill in the details when I prove the latter
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result). First o f all, a formal specifications SPEC has to be defined (which itself consists 

o f an “architecture part” and an algorithm part), in this case for a FSA. It is standard to 

define a FSA (without output) formally by a quintuple <Q,I,8,q0J ;̂ >, where Q is the set 

of states, 2  the input alphabet, 8  the “transition function” from states and inputs to states, 

q0 the start state, and F  the set of final states. All triples of 8 can be viewed as instances 

of the axiomatic scheme <q,i>->q\ where q and q’ are states, i is an input, and is a 

primitive meaning “transits”. This takes care of the “architecture part” of SPEC. The 

state table, as exhibited by 8 , defines for each state in Q all possible transitions to other 

states depending on the current state and the current input. Starting in the single start 

state q0, the automaton changes states according to its inputs and state table entries until it 

either reaches a final state (in which case it is said to “accept the input”) or it ends up in 

the “trap” state (a state, from which it cannot make any other transition than remaining in 

this state for every possible input). Notice that 8  determines what the actual state 

transitions are in the FSA. These particular transitions can be viewed as the algorithm 

“implemented” on a more “generic automaton” (i.e., the given FSA without a particular 

8 ). In other words, <5 is the “program” of the FSA <Q,Z,q0J?> .4'7

Define a m apping/ then, from 2* into Q such that J{w)=q if the FSA is in state q after 

having read w, for all strings w in 2* (this mapping can be obtained inductively from 8 ). 

Obviously, the FSA takes arguments o f /a s  inputs and delivers values o f /a s  outputs (in

One could also exclude F  from the generic FSA, since in a way final states will depend the particular S. However, 
one can always take another “generic automaton” with a desired set F ' different from F, if different final states are 
needed.
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the sense that it ends up in the state, which is the output of the function). Hence, the 

second part of the requirements for the formal specification SPEC is satisfied too.

Next define a labeling scheme L (see definition 3.7) and an interpretation of such 

that the formal specification SPEC is true under that scheme for every ordinary open 

system. Part 1 of the labeling scheme asks us to specify parts of the entity, i.e., o f an 

open system, as label-bearers. In order to account for the fact that the FSA receives input 

from the “outside”, I will treat inputs as far as the “model o f the FSA” is concerned as 

“input states” and call all other states “inner states”. Since the only parts about the 

automaton specified in SPEC are its states (input and inner), we designate the boundary 

of e and its “inner” part as bearers of labels (see the next section for a discussion of the 

legitimacy o f this move). For part 2 of the labeling scheme a method has to be exhibited 

for specifying the label borne by each label-bearing part at any given time—this is where 

things get tricky.
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Fig. 4.1 The relation between com putational and physical states (where 

Computational steps (1,2,3,4), automata states A, B, C , ...

I’ U

-•O---------- *®— K2Kf>
r t t t

8*iio tOdjo Thot ll:3(j 11:4^

S, S2 S3 S4

Real-time, physical states of S: S„ S2, S3, S4, ... 
the tim e interval considered is betw een 8 a.m . and 12 a.m . on M arch

22, 1998).

One has to define “physical states” for e and the boundary region of e, which can be 

related to the abstract states in the automaton. The physical states, call them interval 

states, will be defined (analogous to Putnam) as sets of values of all field parameters at 

all points within the boundary or at the boundary of e, respectively, for a given interval of 

real-time (the basic idea of the construction is shown in figures 4.1 and 4.2). The main 

difference to Putnam’s construction is that we will have to find a way of partitioning a 

fixed interval of real-time such that any arbitrarily long finite sequence of computational 

steps can be seen “as being implemented by the system within this time interval”. Since 

we do not know the actual length of the computational sequence ahead of time, the 

construction will have to ensure that we will get enough physical subintervals that can be 

mapped onto computational states. This can be achieved by letting each interval be only 

half the length of the previous one (and the first be just half of the total interval under
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consideration). As in Putnam’s construction, each automata state type corresponds then 

to the union of different physical states, that is, interval states:

Automata state type

Physical state type
8:00 10:00

Fig. 4.2 The relation between grouped physical states (i.e., interval 

states) and sutom ata statee.

It follows that e will always finish its “computation” o f/  within a finite real-time 

interval independent o f the length of the input. But this means that the FSA could also 

“compute” infinite strings in a finite amount of time (actually, in an arbitrarily small time 

interval) adding evidence to the suspicion that such a stipulated correspondence cannot be 

what implementation is all about.

Finally, one has to verify that e is an honest model under the given labeling scheme L 

for SPEC. This amounts to checking that the labeling scheme is not ex post facto and that 

the interpretation associated with the model must secure the truth o f appropriate 

counterfactuals concerning the machine’s behavior. In the above case, however, this 

seems rather problematic, since it is not clear at all what the standard model o f a FSA is 

supposed to be. A FSA specifies a very general “architecture”, a system with an input 

device (without further details as to the nature and structure of this system cum device) 

both of which can be in different states. Therefore, many entities (in Copeland’s sense), 

using a little imagination, are potential FSAs and in a way this is exactly what the
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theorem above shows. In fact, I would claim that every physical system that consists of 

different states, and exhibits transitions between these states depending on some input to 

the system, would count as a standard model. This implies that the above result could be 

strengthened to an “honest model”, if Copeland’s two criteria were met, too. In the next 

section, after extending the above theorem to psychological theories, I will argue that 

they are indeed satisfied. Hence, every physical system is an honest model of every FSA.

4.3 The Universal Realization of Psychological Theories

Stated as is, Putnam’s Realization Theorem does not present a serious challenge to 

computationalism. After all, finite state machines without input and output capabilities 

lack any kind of interaction with their environments. This defect was repaired in the 

construction of the last theorem, which can be generalized to the realization of 

psychological theories.

In the following, I will assume a formal theory T whose language contains a 

connective together with a non-empty, finite set of constants Q and another finite set 

of constants I  such that if i is in /  and p, q are in Q, then (p,i)~>q is a well-formed formula 

(where Q can be viewed as the set o f mental, or computational, or whatever, states and /  

as the set of inputs, for example). Copeland’s definitions have to be reformulated for 

(psychological) theories:

Definition 4.2: Given a formal theory T, a labeling scheme L, and a physical system S, the 

pair <Sfi> is a model o f  T  iff all sentences o f T  are true o f S  under L. A physical system 

S  that is a model o f T  is said to “implement” T.
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Definition 4.3: A physical system S  implements a function /  iff there exists a labeling 

scheme L and a formal theory T (e.g., a specification o f an architecture and an algorithm 

specific to the architecture that takes arguments o f /a s  inputs and delivers values o f /a s  

outputs) such that <SJL> is a model o f T.

Theorem 4.4: Every ordinary open system S  is a model of every formal theory T (in the 

language L=<QJ,->,.. .> in the above sense).

Proof: Again, a labeling scheme L for S  and an interpretation of such that T is true 

under that scheme for S  has to be defined. For part 1, we designate the boundary of S (for 

inputs) and its “inner” part (for the other states) as bearers of labels, to account for the 

fact that T has constants for inputs besides constants for states. For part 2, a method has 

to be exhibited for specifying the label bome by each label-bearing part at any given 

time:

Consider an arbitrary interval of real-time [/,/ "] and let the boundary of S  be the “input 

region”. Note that the environmental conditions on the boundary throughout [t,tr\ specify 

the input that S  will receive. By Putnam’s Principle of Noncyclical Behavior, “the state 

of the boundary of such a system is not the same at two different times” (Putnam 1988, 

p. 121). We need to define “physical states” for 5  and the boundary region of S, which 

can serve as designations o f the constants from I  and Q. The physical states, call them 

interval states, will be defined (analogous to Putnam) as sets o f values of all field 

parameters at all points within the boundary or at the boundary o f S, respectively, for a
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given interval of real-time. These interval states need to be grouped together (using set 

union) to form state types such that each state type corresponds exactly to one constant.

We first define a mapping from interval states onto constants and then construct the 

labeling from this mapping: start by defining inductively an infinite sequence of

consecutive intervals Int0, Inth Int2, ..., where Int0 is [f/j-) and fntk is the open interval

k  k + l

) ° f  real-time (for k>0). Map the interior of S  during the interval fnt0,

j= i j= i

call it P0, onto the constant {qQ in Q, say) designating the state in which the system 

described by T starts out. Then, for every interval state Pk (defined by the interior of S  

during the interval Intk) corresponding to some p  o f Q do the following: first, define 4  to 

be the interval state of the boundary of S  during the interval fntk. Let /k correspond to 

input i from /  after k steps (*). If the system described by T in state p  transits into state q 

upon input i, define the “successor state” Pk~\ to be the interval state of the interior of S  

during the interval Intk+X. Now form physical state types by taking the union of all 

interval states P  that correspond to a single constant (for all constants from /  and Q). (**) 

For the resulting physical state types a 1-1 and onto labeling function from constants can 

be defined, which takes care of the second part o f L. (***)

To see that S  is a model under the given labeling scheme L for T we need to find an 

interpretation []L of such that [(p,f)-^q]i=true in S. Take [->]L to mean “causes” (or 

“follows nomologically” by the laws of physics, i.e., field theory given environmental 

conditions). (****)
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If S  is in state L(p) and the input to S  is L(i), i.e., during the interval Intk the physical 

make-up of S  is given as well as its boundary conditions, then by the laws of physics it 

would be possible for a mathematically omniscient being (a Laplacian supermind, see 

Putnam, 1988, p. 122-123 for details) to determine that S will be in state L(q) at the 

beginning of IntM . Given the boundary conditions during Intk+l (which correspond to 

the “next” input state and, thus, have to be provided), it can be determined that S  will stay 

in state L(q) throughout IntM . This concludes the proof that L and S  are a model for T 

under []L.

Before I discuss critical points o f the construction (indicated by asterisks) as well as 

consequences of this proof, I would like to point out two interesting features: 1) the 

interval of real-time [f,r ] was used to fix the reference of constants, and 2) its choice is 

completely arbitrary, hence any interval will do. This implies that 3) the system can 

change states arbitrarily “fast”. In fact, physical systems will not only realize finite state 

automata, but also (countably) infinite state automata with a (countably) infinite input 

language (if T is taken to be a description of an automaton and the finiteness restriction 

on Q and /  is dropped).

Yet another issue to be considered is the question what kind of function the system S  

implements? To answer this, define a function /  from I* into Q such \ha.tf(w)=q if  the 

state q is reached after having read w from q0 for all strings w in I* (this mapping can be
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obtained inductively from ‘-^ ’). Obviously, T takes arguments o f /a s  inputs and delivers 

values o f /a s  outputs, in Copeland’s sense, hence, S  implements/48

4.4 Possible Objections to the Extended Version of Putnam’s Construction

I have marked four steps in the above proof that are open to criticism—I will now address 

them starting with the least difficult.

Step (***) would be criticized by Chalmers, since the labeling scheme does not 

include states o f the automaton that are not reached in the particular run (see Chalmers, 

1996, p. 315). This requirement, however, can be satisfied by taking the “subinterval” 

[t,t'\ of [ v ”] (for r ”> 0  and mapping all unreached states onto physical states within this 

interval.

In step (*) reference is made to an input state which is undetermined and essentially 

depends on a particular input (i.e., the ri-th input character). This, of course, is the trick 

that makes it possible to map the accidental boundary conditions of S  at “run-time” to the 

n-th input character. Obviously, there is no systematic relation between inputs and 

boundary states, which a “good” theory of implementation should provide. Note, 

however, that the reference to this character is uniquely fixed for all possible inputs, and 

moreover that it is not an ex post facto assignment (which is, for example, Copeland’s 

critique of Searle’s construction, see Copeland 1996, p. 348).

Step (****) marks a very critical point, the interpretation o f (the equivalent of 

Copeland’s “ACTION-IS”) as “causes”. This can be considered one of the most

48 Instead of letting outputs be intemai states, I also could have designated a particular part of the boundary of S as 
“output region” and defined output states accordingly.
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problematic questions in general, since there are many different possible interpretations 

of I think that Copeland would agree with the claim that all state transitions o f S  are 

caused, since they were just so defined (see Copeland, 1996, p. 353). The question is 

whether counterfactuals are supported, i.e., whether the input had been L(i) and the 

current state L(q) at any time t, S  would have changed to state L(q’) (according to the 

state table). I am not sure if counterfactual support can be directly required as a criterion, 

since even real systems under “different environmental conditions” will not support 

counterfactuals (e.g., a PC will stop working correctly if it is exposed to a strong 

magnetic field). Somehow it has to be specified when transitions obeying counterfactuals 

can be required and expected. In the end, this boils down to a notion of “normal 

operation”, which is problematic in its own ways as pragmatic agreements on the physical 

theory, background assumptions, etc. enter the picture (e.g., see Hardcastle, 1995)—I will 

say more about this in chapter 5.

As far as the above construction is concerned, one could argue that it does not really 

make sense to ask for counterfactual support, since L is defined every possible input 

string. Hence, if  L(i) and L(q) were given, S  would have changed to state L(q') by 

definition of L. If we asked, on the other hand, whether S  in state P  with input /  had 

changed to the successor state P' (for interval states P, P \  I) without supplying L, then it 

would not even be clear what this question means (despite the fact that, given the 

boundary conditions /  and the state of the system P, its next state P' will be “caused”). 

So, one could say that the counterfactual requirement is vacuously satisfied.
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There are objections, however, to the underlying assumption that input states can be 

arbitrarily defined. Chrisley (1994, p. 415) points out that “for computational purposes, 

inputs and outputs are characterized in terms of their intrinsic properties.” Inputs and 

outputs cannot successfully be defined as in the above construction in a “post-hoc” 

manner as the boundary of a physical system without at the same time losing the 

predictive computational understanding o f  the system, because it is not known in advance 

which input state is going to become which boundary state. According to Chrisley (1994) 

this predictive nature of computational system is one of its characteristic properties.

There is certainly something true about the predictive power of “genuine” 

computational descriptions and I will take up this issue again later in this work. For now, 

one could answer that the system is just so defined that all boundary information has to 

be available through each interval in order to predict the boundary condition at the 

beginning of the next interval. Given the environmental influences during that interval in 

turn, it is possible to determine the next state, but again, only knowing all the 

environmental conditions. The reverse direction is certainly not true, but it cannot even 

be asked meaningfully because computational states only have correlates via L, and L in 

turn needs complete information about the development of the evironment o f S  during the 

computation period. Thus, the system is lacking the predictive power of computational 

descriptions if  L is not supplied—but that seems like a platitude, since no system without 

a labeling, i.e., a correlation between formal and physical descriptions, can be used to 

make predictions. The question remains, however, if  it is possible at all to have this kind 

predictive power for descriptions at the level o f fields. It seems that there would be too 

many different possible instantiations o f one and the same computational state, so that it
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would even be difficult to argue that genuine computational systems can “predict” the 

states of fields by virtue of their future computational states (see also the last section of 

this chapter).

Another objection concerning the involved notion of causation, brought forward by 

Chrisley, is that, being a physical notion o f causation, it is too “weak” in that it would 

view events causally connected that “in everyday life and science other than 

mathematical physics we would not take to be causally related” (Chrisley, 1994, p. 414). 

Chalmers too rejects the “physical notion of causation” and requires that the transition be 

“reliable” regardless of environmental influences (see Chalmers 1996, p. 313, where he 

argues that Putnam’s construction fails to guarantee the reliability of state transitions). 

Melnyk as well as Copeland argue for a state transition relation that satisfies certain 

counterfactuals (see Melnyk 1996, p. 398, and Copeland, 1996, p. 351).

Besides the fact that a counterfactual based notion of causation is problematic in its 

own right, the interpretation of *->’ as a physicist’s notion of causation seems in my view 

appropriate in the above construction, because at the level of physical fields no other 

notion o f  causality can be successfully employed (see also Putnam 1988, p. 97). A 

different notion of causality would also require a different level of description, thus 

changing the problem at hand. In fact, the ordinary language notion of causation might 

have even more problems connected to it than the “physical” (e.g. regarding the 

description of real world systems), since it presupposes an ontological division of the 

world that physicists as well as philosophers might not be committed to.
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Step (**), finally, is the one I find most critical: the formation of physical state types. 

As I have already mentioned above, these types are considered legitimate physical states 

by the physical theory used to describe the system. Yet, it seems that something about 

them is very “unnatural”. One would like to restrict type formations to types that have 

“something” in common, something other than what is described by the constant in T, 

which they realize.

The philosophical strategy of this kind of “disjunctive type formation” is to turn the 

multiple realizability argument against itself: while the multiple realizability argument 

was invented to show that one and the same computational/psychological description can 

have very different kinds of physical realizations that need not have anything interesting 

in common, it is used here to show that too many different physical systems can be 

viewed as sharing the same computational/psychological properties. This problem on 

one hand, known to philosophers as the “disjunction problem”, and “multiple 

realizability” on the other are two sides of the same coin, the coin called functionalism. 

Being dual principles, they can be used to defend and defeat functionalism at the same 

time; in other words, they are useless to establish either point. Functionalism, and in 

particular computationalism, could only be defended, if one can find individuation 

criteria for physical state types in a non-circular manner—this is the challenge for 

cognitive science.

In a sense, the above construction exhausts possible extensions o f Putnam’s idea, yet 

there are still many open ends left, probably too many for most philosophers to be able to 

focus on what I believe to be the core of Putnam’s argument. Therefore, a substantial 

modification o f the above construction (or a completely new argument) is needed, which
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essentially retains problem (**) while dismissing all other points o f critique. Only in that 

way will it be possible to locate the true source o f all complications with the notion of 

implementation. In the following, I will present such a construction, which is not 

susceptible to charges such as “wrong notion of causality”, “unreliable state transition”, 

“unconnected inputs and outputs”, etc. because o f the nature of its “physical states”, and 

pinpoint its crucial deviation from the one above.

4.5 The State-to-State Correspondence View of Implementation

So far, we can conclude that the SV, the credibility of which essentially depends on 

choosing the right kind o f interpretation function to sort out “honest models” in the sense 

of Copeland (1996), is on par with the (naive) CV (as implicit in Putnam 1988, for 

example). The last theorem showed how these two views are related: both require at 

some point a mapping between “formal” and “concrete entities”, the former between 

labels and parts o f  the machine, the latter between computational and physical states. 

What the theorem suggests, in nuce, is that there is no essential difference between 

labeling parts or defining states o f  a system (as far as the implementation issue is 

concerned). Both require that one can discern and define spatio-temporal physical 

regions o f a physical system. Actually, both complement each other; they are two sides 

of the same coin. Consequently every description requires both: when Copeland makes 

out parts in a physical system to which he then attaches labels, he needs to take into 

account different “states” of these parts— this is reflected by the fact that there will be 

different labels for these states (high voltage vs. low voltage, see Copeland 1996). On the 

other hand, when Putnam defines physical states o f a system, he has to specify which
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parts o f the system will be considered (in his case the whole region inside the boundary of 

the system). So, parts and states are intrinsically intertwined and one cannot have one 

without the other. Of course, this analysis depends crucially on the definitions of “spatial 

parts” as well as that of “temporal states”. For now, I will simply assume common sense 

notions of both without delving into philosophical details.

One major problem with the extension of Putnam’s theorem was that the notion of 

causation it involves is not satisfactory to many people (see Christley, Chalmers, 

Bringsjord, et al.). The “physical notion o f causation”, so it is argued, is certainly not 

what we use when we describe the behavior of machines, in particular computing 

machines. We want to be able to say that if  the machine were to be in state q and q~$p is 

one of its state transitions, this would cause the machine to transit into state p. In other 

words, “the state transition has to be actual and counter-factual” (Melnyk, 1996). It is 

clear that no extension of Putnam’s construction will be able to do this, because it was 

just so designed as to not have counterfactual supporting state-transitions. Instead, the 

state-transitions were accidental, depending on the environmental influences and 

conditions.

The crucial question with this strong requirement about computational state 

transitions is how they could be related to the physical? A widespread idea suggests a 

functional correspondence between a set o f physical states and a set of computational 

states. The exact properties and restrictions o f this correspondence depend on the 

respective definitions and differ slightly from author to author (e.g., Chalmers, 1996, 

Melnyk, 1996, Cummins, 1988, Copeland, 1966, McLennan, 1994, Endicott, 1996), but
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the general idea is that “the causal structure of the physical system mirrors the formal 

structure of the computation” (Chalmers, 1994, p. 392) and vice versa. What “mirrors” 

means in this context, and if this state-to-state correspondence can solve the problems of 

the naive CV, will be examined in the following sections.

4.6 An Analysis of Chalmers’ Definition of Implementation

Chalmers (1994, 1996) is among those who provide an explicit definition of 

“implementation.” His basic conception (1994, p. 396) of how a computation is 

connected to the physical is that of an isomorphism: state transitions in the computation 

are to be in isomorphic correspondence with reliable causal transitions between physical 

states—;/(->)=“reliably causes” (where is the formal state transition relation in the 

computation, an automaton, for example). To be precise, Chalmers (1994) actually 

provides two definitions of implementation, an informal and a (more) formal one, which 

he holds equivalent. It is worthwhile examining both, since they are not only cast 

differently, but also differ semantically. Since a precise definition of the mathematical 

concept of isomorphism is needed to facilitate the later discussion, I shall review it at this 

point:

Definition 4.5: [Isomorphism] Let and M2HP2^-2) be two structures with

domains D j and D2 , respectively, where relation R j is defined over D]*Dj  and relation 

R2  is defined over £>2XA2- These structures are then said to be isomorphic if  there exists 

a bijective function/ from D j to £>2 such that for all x ^ e D j : R](x,y) o  R2 ( f f ) f y ) ) .

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

For easier reference, I will split this last equivalence into the two implications

riso=>] R](xy) => R2<Ax)fly))

[iso<=] Rl{xy)  <= R2(J[x)fly))

Chalmers’ first informal definition (which itself consists of two phrasings) reads as 

follows:

“A physical system  implements a given com putation when the causal structure o f  the 

physical system  m irrors the formal structure o f  the com putation.

In a little m ore detail, this com es to:

A physical system  implements a given com putation when there exists a grouping o f  

physical states o f  the system  into state-types and a one-to-one m apping from formal 

states o f  the com putation to physical state-types, such that formal states related by  an 

abstract state-transition relation are m apped onto physical states-types related by a 

corresponding causal state-transition relation.” (Chalmers, 1994, p. 392)

There is a little ambiguity in the two phrasings as to what the exact meaning of “mirrors”

is supposed to be. Prima facie one would expect “mirrors” to mean something like “is

isomorphic to,” as “mirrors” usually indicates sameness in structure. Yet, the second

phrasing does not seem to imply structural sameness, since it requires only [iso=>] (i.e.,

that “formal states related by an abstract state-transition relation are mapped onto

physical states-types related by a corresponding causal state-transition relation”), but not
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the other direction [isoc=] (i.e., that physical states-types related by the corresponding 

causal state-transition relation have to be mapped onto formal states related by an abstract 

state-transition relation, too). Hence, with “mirrors” Chalmers seems to mean only 

[iso=>]. At a different place in the text, however, he suggests [iso<=] when he writes “... 

that the formal state-transitional structure o f the computation mirrors the causal state- 

transitional structure of the physical system” (1994, p. 393). So, it seems that “mirrors” 

is to be understood as “isomorphic to,” and, indeed, he later writes: “the relation between 

an implemented computation and an implementing system is one of isomorphism 

between the formal structure of the former and the causal structure o f the latter” (1994, p. 

396).

Hence, the mapping between physical state types and computational states has to be 

bijective (one-to-one and onto) and preserve the abstract state transition relation in order 

to give rise to an isomorphism between computational and physical state types. Note that 

1) the existence of a grouping o f  physical states o f the system into state types is required 

as a necessary prerequisite for the mapping to work and 2) that there are no restrictions 

imposed on the grouping; its mere existence is sufficient.

Before I present Chalmers’ second (formal) definition, a remark on the use of the term 

“state” seems appropriate. The term “state” in this context is sometimes used in the sense 

of “token o f a particular state type”, although this is at best ambiguous and misleading. 

“Automaton state”, for example, could denote a state in the set o f states in the definition 

of the automaton as well as a state in a particular run o f the automaton—the former is a
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type, the latter a token.49 In physical systems, “physical state”, as was pointed out 

already in chapter 2, refers to the particular physical makeup of a system at a time (under 

certain environmental conditions): if  the system is described in terms of a system of 

differential equations Om(t)=Fm(Ii(t),...yIn(t)J>i(t),...J>k(t)) (for finitely many m), then by 

fixing the time parameter (e.g., at (I7) one obtains the state of the system (i.e., by fixing 

the environmental conditions one obtains />,(/,7) ,...,/\( /I7) as well as

^m(A(^7),---/n(*t7)^ i( 'i7)v --A ('i7)) for all m). For example, physical states in field 

theory would correspond to the value of all field parameters at a given time. This notion 

o f state is independent of how often it is instantiated by the system (if at all).

Yet, some philosophers still use “state” as if it referred to a unique particular physical 

occurrence, a constellation of a physical system which obtains only once at a particular 

moment in time, and thus once in the life-time of the system.50 While nothing can be 

identical to this particular occurrence (and it, therefore, does not make sense to say things 

like “this occurrence is the same as x”), the above usage of “state” supports a notion of 

“sameness” (e.g., the system was in the same state at time (17 and ti7). Thus, a physical 

state is not a (concrete) token of some physical state type, but rather a type itself.

To avoid terminological (and consequently conceptual) confusion, I will use the term 

“instantiation of a state” (or maybe “state token”, e.g., see Melnyk, 1996) to refer to a 

unique physical occurrence, and the term “state” in all other cases. The term “physical

49 Example: “The automaton transits from state A to state B on input a producing output b" for the type and “After 
five inputs the automaton is in state A” for the token interpretation.
50 A reason for this conceptual conflation might be that some physical systems might assume or instantiate any state 
(type) only at most once. For example, Putnam’s construction was essentially based on a physical principle that 
guaranteed that (open) physical systems are always in different physical states at different times.
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state type” will be used to stress that a particular physical state has been obtained by type 

formation from “simpler states (state types)”.

After having explicated the overall structure of “implementation” in the first 

definition, Chalmers spells out the details in a more formal definition in which he uses a 

finite state automaton (FSA) as a representative for other computational formalisms:

“A  physical system  P  implements an FSA M  i f  there is a m a p p in g /th a t  m aps internal 

states o f  P  to internal states o f  M, inputs to P  to input states o f  M , and outputs o f  P  to 

output states o f  M , such that: for every state transition relation (S ,/)-4(5”,O ’) o f  M, the 

following conditional holds: if  P  is in internal state s  and receiving input /  where f(s)= S  

an d / ; ') = / ,  this reliably causes it to enter internal state s ' and produce output o ’ such that 

J[s’)=S' andJ [o ')= 0 '."  (Chalm ers, 1994, p. 393)

Note that nothing in this definition requires that the mapping/have to be one-to-one, the 

reason being that imposing injectivity on /  does not seem justifiable in the light of 

multiple realization arguments. Just consider an OR-gate, where the potential, which is 

supposed to correspond to “1”, fluctuates between 4.5 and 5.5 Volts (where 5 Volts 

would be the “ideal” voltage). In this case, there is a whole set o f  physical states, which 

are all different from each other, yet “similar enough” to be rightfully taken to correspond 

to “1”, as practice shows. Hardware designers do it all the time; they produce functioning 

machines whose computational description works both as explanation and prediction of 

the machine’s behavior. Yet, such a correspondence between one computational state 

and many physical states would be excluded by the restriction that / b e  one-to-one.

This is where the idea of a grouping of physical states (mentioned in the former 

definition) comes to reconcile two seemingly incompatible ideas: 1) that no one-to-one
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correspondence can be established at the level of physical states (for the above and 

similar reasons), and 2) that the computational description is supposed to mirror the 

causal structure o f the physical system. By relating not the physical states themselves, 

but more complex types o f these states (formed by the “particular grouping” of states into 

types), it becomes possible to establish a one-to-one and onto relationship between these 

types and computational states, which is the prerequisite of an “isomorphism” (the 

mathematical term expressing structural identity, i.e., “mirroring”).

Chalmers, although never explicitly, seems to suggest that it is possible to obtain an 

isomorphic mapping/* fro m /b y  collecting all those states s to form a state type s/ that 

are mapped onto the same automaton state type 5/ according to / :  “The state-types can be 

recovered, however: each [s/] corresponds to a set {sj/(.y)=S,-} for each S/eAf. From here 

we see that the definitions are equivalent. The causal relations between physical state- 

types will precisely mirror the abstract relations between formal states.” (Chalmers, 1994, 

p. 393) One would define/* from physical state types onto computational state types 

such that/*(s/)=S/ for each SfeM.  This mapping is one-to-one because the physical state 

types have just been defined as such, and it is, furthermore, onto (ensured by the “for 

every state transition relation”-clause in the definition), but it is not isomorphic (since 

[iso=>] does not hold as I will show in the following).

Let us examine how Chalmers’ definition works in detail, starting with a simple 

physical system P j (e.g., described in circuit theory—see Figure 4.3) for which we can 

easily specify physical states types: switch Swl is connected to light bulb Lb and battery 

Ba by copper wires.
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Figure 4-3The simple physical system P / consisting of a battery, a

S ' * .
_L D down r ,_ Ba Lb

switch, and a light bulb.

Input to P[ consists in switching SwI from either “up” to “down” or vice versa (the states 

are named ‘lu ’ for “SvW upwards”, ‘Id’ for “SW downwards”). The internal states o fPj 

are the states of SwI (‘u’ for “up”, ‘d’ for “down”). Finally, output produced by P j are 

the states of the Lb which is either lit or or not lit (*+’ for “light on”, “-” for “light o ff’)- 

Now consider the following automaton M /=(Q,£,r,5,q0,F), where Q={A,B} is the set of 

inner states, 2={a,b} the input alphabet, r={0,l} the output alphabet, 

8={((A,a),(B,l»,((B,b),(A,0»} the transition function from states and inputs to states and 

outputs, <70=A the start state, and F={A,B} the set of final states (which in this case does 

not really matter). The automaton is depicted (in the standard fashion) as a graph in 

Figure 4.4, where nodes denote states and edges denote transitions between states, both 

labeled accordingly (the format for edge labels is “input/output”). For the rest of this 

section, I will use graphs to represent automata instead of the more tedious mathematical 

notations.
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F igu re  4 .4The autom aton M /  w ith inputs from {a,b> and outputs 

fro m { 0 ,l}.

Automaton M j transits from state ‘A ’ on input ‘a’ to state ‘B’ outputting ‘1’, and from 

state B on input ‘b’ to state ‘A’ with output ‘O’. It follows that P j implements M j 

according to Chalmers’ definition; just map (every occurrence of) “u” to ‘A’, (every 

occurrence of) “d” to ‘B’, (every occurrence of) “ Id” to ‘a’, (every occurrence of) “ lu” to 

‘b’, (every occurrence of) to ‘1’, and finally (every occurrence of) to ‘O’. The 

resulting mapping obviously satisfies all conditions of the definition, because it supports 

counterfactuals, or in Chalmers’ terms “strong conditionals”: “If a system is in state A, 

then it will transit into state B [on input ‘a’], however it finds itself in the first state”. 

(Chalmers, 1996, p. 316—capitalization of state names and the remark in brackets are 

mine). Both of Chalmers’ requirements for counterfactual support, that the transition be 

lawful and reliable, are satisfied by P j according to accepted physical theories (i.e., 

circuit theory). In particular, I would like to stress the reliability of state transitions o f all 

systems devised in this chapter, because Chalmers holds that it is the reliability of state 

transitions which ultimately distinguishes implementation in his sense from Searle’s (or 

Putnam’s, for that matter): “The added requirement that the mapped states must satisfy 

reliable state-transition rules is what does all the work.” (Chalmers, 1994, p. 396)
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So far, the application of the definition has been straightforward, every automaton 

state type corresponds to one and only one physical state type in a direct way (there is no 

need for a complex grouping of physical states types). Consider now the physical system 

P2  consisting of two switches SwI and Sw2 connected to a light bulb and a battery by a 

copper wire (as depicted in Figure 4.5). Input to P2  consists in switching one of SwI or 

Sw2 from either “up” to “down” or vice versa. The four possible input states are, 

analogous to the previous notation, denoted by ‘lu ’, ‘Id’, ‘2u’, and ‘2d’. The internal 

states o f P2  are the four possible states of the switches (denoted by ‘uu’, ‘dd’, ‘du’, and 

‘ud’, where the first letter indicates the state of SwI and the second that of Sw2). Output 

o f the system is again the state of the light bulb (denoted as before).

Swl  \ __
- L .B a  X   Sw2 Lb

F ig u re  4.5The physical system  P2 consisting o f  a battery, two 

switches, and a light bulb.

The abstract structure of P2  for the above-defined input, inner, and output states, can be 

depicted as state-transition diagram, which also defines an automaton, call it M2 ■ The 

structure of this automaton is isomorphic to the causal structure o f P2  (for the given 

physical states), hence, P2  implements M j.

Suppose switch Sw2 is never pressed; then it can readily be seen that P? implements 

M j, too. Starting in state “du”, the automaton can only transit between “du” and “ud”: 

ignoring Sw2 simply turns A/? into M j. Once Sw2 is used, however, there is no mapping 

that can relate the above-defined states in M2  to states in M j, since whether input “lu”
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turns the light on or off depends on the state o f Sw2. I will sketch only part of the 

argument (since it is rather long and tedious given the number of possible mappings that 

one has to consider): take “du” to be the start state, which has to be set in correspondence 

with ‘A’. Then either “ lu” or “2d” or both have to be mapped onto ‘a’, and as a 

consequence, either “uu” or “dd” or both will correspond to ‘B’. Suppose we map “ lu” 

to ‘a’ and “uu” to ‘B \ Then “Id” have to correspond to ‘b \  But this is not possible. To 

see this, suppose that “ud” will be mapped onto ‘A’ (since both, “ud” and “dd” must 

correspond to some automaton state). Then “2d” will have to correspond to ‘b’, and 

consequently “ Id” to ‘a’. Contradiction. So, “ud” cannot be mapped onto ‘A’, thus they 

must be mapped onto ‘B \ But then, the transition “ ld/+” turn the light on, as opposed to 

‘b/0’ which turns the light off in A//. So this is not possible either. Hence, “ Id” cannot 

correspond to ‘b’. It follows that “uu” cannot correspond to ‘B’ and “ lu” not to ‘a’. 

Thus, “2d” must correspond to ‘a’, and so on...

lu/+

uu
ld /-

2u/-

2u/-
2d/+

lu/-

ld/+

F ig u re  4.6The causal structure o f  physical system  P2, w hich defines 

the isom orphic autom aton M 2-

In the end, we establish that for the above-defined state types P2  does not implement 

M i . However, if  other state types are considered, then there exists a m apping/under
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which P2  implements the automaton A//: take the output to be the state of the light bulb 

together with the state o f Sw2 (resulting in the four cfr'states “+u”, “-u”, “+d”, and “-d”, 

where the first letter denotes the state o f the light bulb and the second the state o f Sw2). 

The idea here is to introduce extra output states so that the effect o f pressing switch Sw2 

can be ignored. This combination is physically legitimate, because all states are 

physically specifiable and support counterfactuals (it should thus be acceptable for 

Chalmers). In fact, every state will be acceptable as long as it can be specified within the 

physical theory that is used to describe the physical system (in this case circuit theory). 

Figure 4.7 depicts the causal structure of the two-switch system for the new states:

uu

,!2d/-d
) 2u/+u !, 
\ldJ+d I

ld/+d

F ig u re  4 .7  A  graph o f  the states and transitions in the tw o-sw itch 

system  P2 after inputs, outputs, and states have been redefined. States 

encircled by  a dashed line are m apped onto the same autom aton state.

For the following, assume in addition that the input alphabet o f A// contains the symbol 

‘c’ (this does not change the automaton, since ‘c’ is not used in any transition in M j—see 

also below). Define/ to be the following function:

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Inner states M  u)=A J[d d)=A ,/tud)=B A uu)=B

Input states / lu )= a yUd)=b yi2u)=c y(2d)=c

Output states A+u)=l X-d)=l A-u)=0 y(+d)=o

It can be seen that for “(A,a)->(B,1)” and “(B,b)->(A,0)” (i.e., for every state transition) 

the conditional of Chalmers’ definition of implementation (i.e., “if the system were in 

state ..., it would transit into ...”) is true: take the first transition “(A,a)->(B,1)”. Two 

states of P2  correspond to state ‘A’, “du” and “dd”. Suppose P2  were in state “du”. 

Since the only input corresponding to ‘a’ is “ lu”, then P2  would transit reliably into state 

“uu” (corresponding to ‘B’) and produce output “+u”, which corresponds to ‘1’. 

Similarly, if the system were in state “dd”, then P2  would transit reliably into state “ud” 

(corresponding to ‘B’) and produce output “-d” (corresponding to ‘1’). The same holds 

true for the second transition. Hence, according to Chalmers’ definition, P2  implements 

M[ under f  (even if it does this in an admittedly strange way).

This leaves us with a very interesting situation: P2  implements A// (under the above­

defined function f )  and P2  also implements M2  (which has a different, more complex 

transition structure than M j). Assuming that automata are the appropriate formalism to 

reflect the causal structure of a physical system, one can reach two (not necessarily 

exclusive) conclusions: 1) physical systems can have multiple causal structures, which 

depend on the grouping of physical states (i.e., the level of description for a given set of 

physical states), or 2) Chalmers’ definition has to be modified to reflect the causal 

structure o f the system determined by the given set o f physical states.
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The former does correspond to our intuition that the same physical system (i.e., the 

same spatio-temporal region) can be described at different levels according to different 

notions o f physical state appropriate for that level. Note, however, that one is limited to 

groupings (that is, combinations) of the given physical states in the above case, which 

are, of course, limited to groupings that allow for reliable transitions between them 

(otherwise Putnam’s construction could sneak in the backdoor).51

The latter conclusion points in another direction: if computational descriptions are to 

mirror the causal structure of physical systems, then the causal topology of a set of 

physical states alone should be necessary and sufficient to specify the “corresponding” 

computational description. Although this approach does not leave any room for 

groupings of states into state types within the definition of implementation, it can still 

account for all of the potentially different computational descriptions obtained from 

Chalmer’s definition by simply considering the groupings of states (implicit in Chalmers’ 

definition) as states of a physical system (e.g., the same system at a different level of 

description). That way the second leaves open the possibility that physical systems might 

have more than one causal structure (depending on possible groupings of its states), while 

removing the burden from the theory o f implementation to decide which of these 

groupings are legitimate and returning it to the theory that delivered these states in the 

first place.

51 This might not allow one to “jump” to upper levels, where physical states (defined at that level) are not (known to 
be) combinations o f “lower-level” states.
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It seems that both conclusions have their own virtues. However, I will show in the 

following that the first (in my view) also incorporates irrepairable flaws, while an 

extension of the second can (flawlessly) combine the advantages of both.

4.7 A Modification of Chalmers’ Notion of Implementation

Recall that Chalmers’ conception of implementation is that “the relation between an 

implemented computation and an implementing system is one of isomorphism between 

the formal structure of the former and the causal structure of the latter” (Chalmers, 1994, 

p. 396). An isomorphic correspondence between the computational and the physical 

structure is required, if computation is to be an “[..] abstract specification of causal 

organization” (Chalmers, 1994, p. 396). However, nothing in Chalmers’ definition 

ensures that the formal state-structure of M j mirrors the causal state-transitional structure 

of P2 - The reason for this is that there are transitions within the physical system that do 

not correspond to any transition in the formal computation, such as “(du,2d)->(dd,+d)” 

(the formal pendent would be “(A,c)->(A,0)”).52 So, although all physical states are 

mapped onto formal states, not all (reliable) causal relations among these states are 

captured by the formal system. In short, [iso=>] is not ensured to hold by his definition.

52 One could object that this argument is solely based on a formal trick, namely on adding a new “dummy” character 
to the alphabet o f  the automaton to which unused inputs can be mapped. This objection could be countered by 
pointing out that a new character is not really necessary, since inputs could have been mapped to ‘e‘, too (e-transitions 
are part o f the standard equipment in automata theory). A better response, however, is to present two automata with 
the same alphabet that illustrate the same point (namely the omission o f a transition in one automaton, which is 
supposed to be implemented by the other):
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One solution, assuming that all (finitely many) inner physical state types are defined 

and given, would, therefore, be to define to be the set o f all causal transitions from 

inner physical state types plus physical input types to other inner physical state types plus 

physical output types for all possible physical state, input, and output types of the system. 

The union of the first projection of the first projection and the first projection of the 

second projection of -> would then be the set o f computational inner states types, the 

second projection o f the first projection would be the set of computational input types, 

and the second projection of the second projection the set of computational output types. 

In this way input, output, and inner states (of an automaton, for example) would be 

derived directly from a physical description of the system. The structure o f the resulting 

automaton would necessarily be isomorphic to the causal structure of the physical system. 

Hence, it is always possible to find an isomorphic computation for any physical system 

(which is unique up to renaming).

Even if  one does not want to take computational states to be sets o f  physical states, 

Chalmers’ definition can be modified to reflect the stronger requirements [iso<=] and 

[iso=>] if physical states are assumed as given—this corresponds to the second 

conclusion, which does not involve groupings of states into types, but only the states 

themselves (note that I used the term “realize” instead o f “implement” for reasons that 

will become clear shortly):
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Definition 4.6: [Realization of an FSA] A physical system P realizes an FSA M  if there is 

a bijective mapping f  that maps internal state types of P to internal states of M, input 

types to P  to input states of M, and output types of P  to output states of M, such that:

1. For every s, s', i, o the following conditional holds: if  P is in internal state s and 

receiving input i where fs )= S  and f i ) - I  and this reliably causes it to enter internal 

state s' and produce output o' such that/(j’)=5’ m dj{o ')= 0 ', then (SJ)-^(S ',0 ') is a 

state transition o f M. ([iso=>])

2. For every S, /, S', O' the following conditional holds: if  P is in internal state s and 

receiving input i where f '( S ) - s  and f \ I ) = i  and (SJ)~>(S',0') is a state transition of 

M, this reliably causes it to enter internal state s' and produce output o' such that 

f l(S')=s’ and f \ 0 ') = o '.  ([iso<=])

This modification comes at a price, however, since M2  is the only automaton (type) up to 

renaming that mirrors the causal structure of P2  (under this notion of implementation): 

on this new definition P2  no longer “realizes” (or in Chalmers’ terminology 

“implements”) A//. In other words, if  the causal structure o f a physical system is 

completely described by an automaton for a given set of physical states, then there is no 

room for the system to realize another automaton, except if  the set o f physical states is 

altered (e.g., by grouping them). One should be willing to pay this price if  one obtains a 

computational description of the causal structure of a physical system (for the given 

states) in exchange.
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Chalmers, however, wants to allow physical systems to implement all kinds of 

simpler computations, since he believes that there is “no canonical mapping from a 

physical object to the computation it is performing.” (1994, p. 397) This is a result of his 

conflating two conceptually distinct steps or operations: 1) the formation of physical state 

types in terms of which the implementation mapping will be defined; and 2) the 

specification or establishment of that mapping itself. Whereas in the second phrasing of 

his first definition the existential quantifier ranges over mappings and groupings of 

physical state tokens into types, he abandons this separation in his second definition by 

establishing a mapping from physical states to automata state types. This leads him to 

accept that “within every physical system there are numerous computational systems. To 

this limited extent, the notion of implementation is ‘interest-relative’” (1994, p. 397). 

This conclusion seems to be counterproductive to the computationalist program of 

describing the causal structure of a physical system computationally—every physical 

system will now have many different causal structures at the same time! How are we 

going to find the “right” one, or if  there is no “right” one, then one necessary for the 

possession of a mind, say? I do not want to repeat Chalmers’ rhetorical tactic of using 

quick estimates to impress the reader, but it seems that the chances of figuring out the 

correspondence of interesting automaton/automata in the brain that give rise to mind are 

almost zero, if  the formation o f physical state types is not given and thus, within limits, 

completely arbitrary (e.g., take the states o f axons of every neuron every millisecond for 

fifty years to be the physical state tokens which can be arbitrarily combined to form 

types, for example, the state of neuron_14554 at 121232 milliseconds and the state of 

neuron_9834511 at 4365354 milliseconds after birth form a state type).
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My view is that the formation of physical state types should not be allowed to be 

considered interest-relative; otherwise systems like Putnam’s will count as computing 

too. Or to put the same point another way, if  one allows the formation of physical state 

types to be arbitrary and unconstrained, then the conceptual “work” for which we turn to 

the notion o f implementation will simply devalue, without illumination onto the question 

of how we individuate physical state types. On the contrary, one would like to allow very 

limited possibilities for the formation of “reasonable physical state types”, derivable 

within the physical theory describing the system’s behavior: physical state types are 

theory-relative! Only severe physical restrictions of physical state type formation 

together with the above canonical mapping can rescue the notion of implementation from 

being observer/interest-relative. I will show below that Chalmers gains nothing by 

emphasizing the need for “strong, reliable state transition conditionals”, if he at the same 

time ignores the formation of physical state types.

Even if  one were to grant Chalmers his “interest-relative” interpretation of 

implementation that views physical systems as implementing “simpler” computations at 

the same time, there is problem with his view of “simpler”. While it is common in 

complexity theory to measure the complexity o f a computation in terms of “the length of 

the computation” (i.e., number of computational steps as function of the input size), some 

people use the number o f states o f an automaton as a complexity measure (e.g., Chaitin). 

Although not made explicit in his paper, Chalmers too uses the number of states as a 

measure o f complexity (of computations) when he allows physical systems with n 

physical states to implement automata with n or fewer states.
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What is problematic with such a complexity measure, however, is that there are 

automata with a huge number of states that compute very simple functions while other 

automata with only few states compute very complex functions (here the terms “simple” 

and “complex”, attributing properties to functions, are to be understood in the sense of 

standard complexity theory). In short, the number of states per se is not good measure of 

the complexity of the function computes by an automaton. This is why usually an 

additional requirement is added: the complexity of a function is defined to be the number 

of states o f the smallest (in terms of states) automaton that computes this function. Even 

if the smallest automaton is not unique, there will always be a smallest number o f states. 

What is needed for this kind of definition, however, is a way o f comparing automata with 

respect to the functions they compute. The simplest way of doing this is just to compare 

the input-output functions of two automata and check if they are the same. However, this 

is not sufficient in the current case, as we are not only interested in the input-output 

function, but also in the sequence of steps, i.e., in the transitions involved in computing 

it—if we were not interested in modeling the causal structure o f a physical system, the 

internal computational structure o f an automaton would not matter. Therefore, we need a 

way o f comparing the inputs and outputs as well as the sequence o f state transitions 

needed to compute the function.

To illustrate this problem, consider the following automaton M3 :
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F ig u re  4.8 A  graph o f  autom aton A /j, which is bisim ilar to A//.

This automaton obviously computes generates the same language as A// (if one assume B 

to be a final state, for example). Not only do they compute the same function, but in 

addition they can be regarded as “almost isomorphic” (i.e., “the same from the outside”, 

see Barwise and Moss, 1996, p. 37), in that there exists a non-empty relation R between 

M i and A ( c a l l e d  bisimilarity) such that:

1. if R(S],S2 ) and (S jJ )-^(T j,0 )  in M j, then (S2 J)~^(T2 ,0 ) in M2  for some T2  and

R(Ti ,T2)

2. if R(Sj,S2 ) and (S2 J)~^(T2 ,0 ) in M2, then (S]J)~>(T/,0 ) in M /  for some Tj and 

R(TI ,T2)

To put this definition into plain English: two automata are considered bisimilar if  states 

from one automaton can be associated with states from the other in such a way that for 

every state transition in one automaton there is a corresponding one in the other which 

leaves both automata in states that are associated and vice versa. If a physical system 

implements a particular automaton M, then it seems it should also implement all 

automata that are bisimilar to M: not only from a computational perspective because the 

input-output behavior is the same, but also from an implementational point of view, 

because the number o f transitions necessary to obtain a certain output for a given input is 

the same (for all possible inputs).
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It seems clear that Chalmers intuitions lean in this direction when he claims that all 

other computational formalisms can be expressed in terms of his combinatorial state 

automaton (CSA) and that these other computations are implemented by physical systems 

if  their corresponding CSAs are implemented by those systems. In other words, if a 

physical system implements a certain CSA, then all automata that compute the same 

function as this CSA can “be viewed as being implemented as well” (note that Chalmers 

does not define how one would “view” them as being implemented via the 

“corresponding CSA”). In particular, a Turing machine with 10 times as many states as 

the CSA and an arbitrary long tape can still be viewed as being implemented by the 

physical system as long as its input-output function is the same as the one of the CSA. 

What remains unclear in this context, however, is why this relationship is unidirectional, 

i.e., why no CSA with more states (than the one implemented by the physical system) 

that computes the same function is viewed as being by his definition o f implementation. 

Suppose a physical system P (which has three physical states defined) implements 

by virtue of a function /  which is an isomorphism. P will also implement the 

bisimilar automaton M j (using a function/ ’ which does not give rise to an isomorphism). 

But it does not implement the bisimilar automaton M4  (according to Chalmers’ 

definition):53

53 I have to specify what I mean: P does not implement A/j in a “straightforward” manner taking internal states like 
“switch on”, “switch off” (i.e., without defining physical states, internal as well as input/output states, that depend on 
additional factors such as time, etc., for example “switch up at 10 p.m.” as opposed to the “timeless” “switch up”).
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F ig u re  4.9 A  graph o f  autom aton M 4, which is bisim ilar to A //.

Why should a physical system implement bisimilar computations with fewer states 

and not those with more states? This is not clear at all! Remember that the requirement 

at the heart o f Chalmers definition o f implementation, which is thought to block Putnam- 

like constructions, is the that of reliable state transition: for every state transition 

between to computational states there has to be a reliable (counterfactual supporting) 

state transition between physical states associated with those computational states. 

Additionally, he required that the association be functional—different computational 

states cannot be associated with the same computational state. But that requirement 

seems quite arbitrary.

Consider an optimizing compiler that detects that two constants (or variables, for that 

matter) have the same value at all times in a given computation and maps both constants 

onto the same machine register (on a given machine). Are we now supposed to think that 

the program is not implemented any longer (because of the optimization step), while the 

same program compiled by a non-optimizing compiler would count as being 

implemented?

It seems that a physical system should either implement one computation (i.e., the 

one which is isomorphic to its causal structure for the given physical state types) or 

otherwise all bisimilar computations; if  it does not get the causal structure right, then at
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least it will get the input/output function right—always assuming, o f course, that the 

physical states and their causal connections are fixed.

So, on the one hand, there are reasons to distinguish isomorphic computations from 

other bisimilar computations (they “mirror” the structure causal topology defined by the 

given physical states), and on the other hand there are reasons to view them as all being 

implemented by the same system (they “mirror” the computational sequences of 

transitions for every input). To put it into a slogan: while bisimilar computations get the 

causal dynamics of every possible computation of the physical system right (supporting 

counterfactuals!), the isomorphic computation gets its causal structure right in addition!

Fortunately, there is a simple definition of implementation that accounts for both 

aspects of computations (bismilar and isomorophic) by building upon the above 

definition of “realization of an FSA” (definition 4.4):

Definition 4.7: [Implementation of an FSA] A physical system P implements an FSA M  

in case M  is bisimilar to the automaton that P  realizes.

4.8 A Pitfall for Correspondence Theories: The Slicing Theorems

Returning to the issue of physical state types, I have already mentioned that what is 

considered “physical state” is already a kind of type. The switch, for example, in “totally 

up” position encompasses all (meta)physical occurrences of “the switch being totally up” 

(e.g., times at which the switch is in that position), hence, “switch totally up” is a physical 

state type. This has to be distinguished from types like “almost up” or “closely enough 

up”. One might want to count the former as well as the latter as part of a more abstract
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type “switch up”. In that case, however, one has to define criteria for the formation of 

these more abstract types from (basic) physical types. Chalmers does not provide any 

criteria, neither for the formation of (basic) physical types nor for more abstract types. In 

his first definition, he is satisfied with the mere existence of a grouping o f types into more 

complex types. In his second definition, he simply notes that his “[...] definition uses 

maximally specific physical states s rather than the grouped state-types” (Chalmers, 1994, 

p. 393). What exactly “maximally specific physical states” are is left open. Since time is 

left out in his definition, it must obviously enter here as part of the “physical state”, but it 

is not clear how. This too, makes it seem as if there need not be any resemblance 

between different physical states that can be grouped together to form a type as long as 

the function / maps them onto the same 5/. Obviously, this opens doors to all kinds of 

wild implementations!

Consider system P j, augmented by the temporal attributes “on weekdays” and “on 

weekends”, so that pushing the switch upwards/downwards on weekends can be 

distinguished from pushing it upwards/downwards on weekdays. The same distinction is 

made with respect to internal states: the switch can be in up/down position on weekdays 

and on weekends. Note that the system, call it P j 4 , automatically changes states Fridays 

and Sundays at midnight, without further ado. The internal states of P \ 4  are then 

“switch down on weekdays” (denoted by ‘id ’), “switch up on weekdays” (denoted by 

‘td ’), “switch up on weekends” (denoted by ‘te ’), and finally “switch down on 

weekends” (denoted by ‘ie ’). The time-dependent input states are “push Swl upwards on 

weekdays” (denoted by ‘Std’), “push Swl downwards on weekdays” (denoted by ‘Sid’), 

“push Swl upwards on weekends” (denoted by ‘STe’), “push Swl downwards on
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weekends” (denoted by ‘S ie’). The output states of P i 4  are denoted by 4 Id’ for ‘‘light on 

on weekdays”, ‘Od’ for “light off on weekdays”, 4le’ for “light on on weekends”, and 40e’ 

for ’‘light off on weekends”. Figure 4.10 depicts the causal structure of P i 4  (note that the 

e/e-transitions account for the automatic change in states resulting from the influence of 

real-time):

, STd/ld _  .I d L  , 1  td
Sid/Oil

F ig u re  4.10 A graph depicting the causal structure o f  the physical 

system  P / 4 .

Strangely enough, P j 4  implements automaton My.

Inner states /M )= A /Td)=B /Te)=B _/(4-e)=C

Input states XSTd)=a y(STe)=a y(S4d)=b /(Sle)=b

Output states y(ld)=l A0d)=0 / l e ) = l y(0e)=0

This mapping can be generalized. In order for a switch system P i ,t to implement an 

arbitrary FSA (with m states, k  different input and / different output symbols) one has to 

ensure that P in  has enough states and edges that can be mapped onto the graph of the 

FSA. The following theorem (which I christen the “Slicing Theorem” because it
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generates additional states by “cutting off temporal slices” of existing ones) states the 

requirements and its proof exhibits the construction:

Theorem 4.8: [Slicing Theorem] P j j k  implements any FSA with k  transitions (for £>1). 

Proof: Consider the physical switch system with n=2k internal states (for k> 1) depicted as 

a graph with n nodes below. Each node is labeled with a (bold) natural number from 0 to 

/i-l, and edges from node i to t+1 are labeled with Hi and edges from node /+1 to i are 

labeled with ‘/+1//+1’ (e.g., the edge from node 3 to node 4 is labeled with ‘4/4’). There 

are e/s-transitions from node i to i+ 2 (for i<n-2) as well as s/e-transitions from n-2  to 0 

and from n-\ to 1. Each of the two original states of the switch system can be in k  

different states within an arbitrary given time interval /  (e.g., if £=24, let /  be one day and 

consequently consider switch states at each hour interval of the day).

e/ e

e / ee / e

e/ e2/20/0 n -l
3/3

e/ e

e/ e

F ig u re  4.11 A  graph depicting the physical system  P i2 k  (dotted lines 

indicate states that lie w ithin the sam e tim e interval).

Pick an arbitrary FSA M with k  transitions, input alphabet £  and output alphabet T (where 

ce ll and d eT  are symbols that do not occur in any transition). Notice that M ean have at
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most £+1 nodes (but must have at least one node).54 Without loss of generality, we can 

assume that the transitions are enumerated: Define the following

m apping/for P]M: for each transition (S,a)->i(T,b) (where S, T are states and ae£-{c} 

and bef-{cl})  for i</c, let f[2t)=S, f[2i+\)=T, f[2i)=a, f[2i)-b, /[2/-H)=c, {[2i+\)-d  (all

transitions from 2/+1 to 2/ are neglected). Then it can be checked that under this 

mapping P \ n implements M. The way this mapping works is simple: every transition of 

M  is associated uniquely with a transition from node / to /+!.

F ig u re  4.12 Transitions in  P \2 k  that are m apped onto all k  autom ata 

transitions.

Thus, for every transition (S,a)->i(T,b) in M, the following is true: if P j n is in internal 

state 21, it can only receive input 2/ and produce output 2/ (given the time-dependence of 

all inputs and outputs, 2/ and 2i are the only states defined for that particular period of 

time, namely the time interval in which the switch system can be in states 2/ and 2/+1— 

(*) other inputs/outputs that may be mapped onto d b  by /cannot be received/produced in 

that time period and need, therefore, not be taken into consideration). Given that P[ n is 

in internal state 2/ and receives input 2/ (such that J{2i)=S and j[2i)~a), this reliably 

causes it to enter internal state 2/+1 and produce output 2/ such that J{2i+\)=T and 

f[2i)=b. q.e.d.

54 There could be more nodes, if  some o f  them are unreachable from the start state. In that case, one needs to divide 
the time interval further to obtain new states which can be mapped onto the unreachable ones, but this presents no 
difficulty.
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There is an obvious weak spot in the above argument, marked by *(*)’• One could 

argue that even though other input/output states are not applicable (because they have 

been just so defined), they should not be excluded a priori, but be taken into 

consideration in the proof. In other words, if  there are other inputs, even though they are 

not available at the respective state of the system, that are mapped onto a, say, then the 

definition o f implementation should take care of them, but this is not the case. Take, for 

example, the following automaton:

# /l

F ig u re  4.13 An autom aton which could be used to argue against the 

validity o f  the Slicing Theorem .

Define/ according to the above construction for the three transitions:

(S,a)->i(T,b) A-)=s A-)= T A-)=a A..)=b

A0)=A AD=B A0)=# / ! ) = /

m =A AV=c A2)=* yc3>=/

A* )=B A5)=c y(4)=# A5)=I

In checking whether the switch system so defined implements the automaton under f  one 

runs into the case where the switch system is in state 0 and receives the pendant to input
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*#’, i.e., input 0 or input 4. Even though the latter is not possible if  the system is in state 

0, according to f  it maps onto input *#’ in the automaton, and is, thus, a legitimate 

candidate for an input. It follows that the antecedent o f the conditional (in the definition 

of implementation) is (“theoretically”) true for internal state 0 and input 4, but that the 

consequent is false, because the system will not (reliably) transit into state 1 producing 

output L In fact, it will remain in state 0, because it did not receive any input in the first 

place. Hence, one could conclude that the theorem is not valid for cases such as the 

above.

Whether this kind of argument is valid or not, I leave to the reader to decide. Even if 

the objection is correct and the theorem has to be restricted to cases where no two 

transitions use the same symbol, a strange aftertaste remains: the simple switch system 

will still implement a restricted, yet infinite class of automata. Besides: every language 

accepted by an automaton with k transitions without such a restriction can be obtained as 

a homomorphic image of the language o f an automaton with fc transitions with the 

restriction.

Before I discuss the consequences of the Slicing Theorem for general theories of 

implementation, I would like to point out that this result can also be extended to CSAs, 

“which differ from FSAs only in that an internal state is specified not by a monadic label 

S, but by a vector [S^, S^, S-*,...], where the /th component of the vector can take on a 

finite number o f different values, or substates. [...] Input and output vectors are always 

finite, but the internal state vectors can be either finite or infinite. The finite case is 

simpler, and is all that is required for practical purposes” (Chalmers, 1994, p. 394). I 

will, hence, assume internal states to be finite. The implementation conditions are then:
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“A physical system P  implements an CSA M  if there is a decomposition o f internal states

o f  P  into com ponents and a m apping /  from the substates sJ  into

corresponding substates S J o f  M,  along w ith sim ilar decom positions and mappings for 

inputs and outputs, such that for every state-transition rule

 0*1) o f  M: i f  P  is in internal state [ j V , . - ]

and receiving input [t^,...,/^]55 w hich map to formal state and input [S^,5-,...] and 

*] respectively, this reliably causes it to enter an internal state and produce an 

output that map to and *] respectively.” (Chalm ers, 1994, p. 394)

Chalmers points out that “a natural requirement for such a decomposition is that each 

element correspond to a distinct physical region within the system [...] the same goes for 

the complex structure o f inputs and outputs”. Again, he claims wrongly that “state- 

transition relations are isomorphic in the obvious way”. Furthermore, he is convinced 

that his CSA model prevents the notion of implementation from the threat of vacuity: 

“What counts is that a given system does not implement every computation [...] This is 

what is required for a substantial foundation for AI and cognitive science, and it is what 

the account I have given provides” (1994, p. 397). This can be contrasted with the 

following theorem:

Theorem 4.9: [Extended Slicing Theorem] Pmj k  implements any CSA with k  transitions 

and m different substates o f each state (for k> 1 and m> 0).

55 I corrected the misprint in Chalmers’ article by substituting ‘k’ for V .
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Proof: Since the general proof is rather lengthy, but not difficult in principle, I will sketch 

it for a CSA M  with 8 states which are vectors o f three components (substates) that can 

each assume one of the two values ‘0’ and ‘1’. M  will read inputs which are vectors of 

two components and deliver outputs that are vectors of one component, both substates 

take values from {0,1}.56 Since there are 4 possible inputs and 8 possible inner states 

(output states do not have to be counted separately, because whenever input and inner 

state are the same, the output has to be same, too), M  could have at most 4*8*8=256 

transitions. I will show that P3 3 5 6 * a 3-switch system with three parallel switches/light 

bulbs connected to a battery and 256 internal states, implements M. First, consider the 3- 

switch system over some time interval Int, which is further divided into eight subintervals 

of equal length.57 The first switch can be in states onfat 1/2, offfat 1/2» onInt2/2’ Q̂ Int2/2^ 

the second in states on[n( 1/4 , offim i/4 , on[nt2 /4 , *Rlnt2/4 , onInt3 /4 , ^ I n t  3/4  ̂ on1^ 4/4 , 

offint4 /4 , the third in states onM I /8 -, °^In tI/8  ̂ onInt2/8> and so on (“Intl/2” designates 

the first half, “Intl/4” the first quarter, “Int2/4” the second quarter, etc. of Int). Consider 

only transitions from “o ff’ to “on” states. Then within Int, there are eight possible 

combinations of transitions for the three switches. Since there are also eight possible 

transitions between any two combinatorial states, one of the eight transitions can be 

mapped onto the one in AT: if M  transits between states [S iA A ] and [Si’A ’A ’] on 

input [/[, I2] outputting [0\], this corresponds to the 3-switch system transiting from state

55 For example, the CSA could compute the “cany” in an addition: it would take the input as binary number and add it 
to the number represented by the current state, then transit into a state which represents the sum (modulo 8) and report
if  a carry over has occurred during the addition (by outputting 1, otherwise 0). To illustrate this, assume the automaton 
is in state [1,0,1] and receives input [1,1]. This makes it transits into state [0,0,0] and with output [1]. Had it been in 
state [ 1,0,0], then the output would have been [0] and it would have transited to state [1,1,1].
57 For k  substates, each o f which can assume any o f  n different values, one would have to consider nk different 
subintervals.
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[°ftlntx/2 ,ottlntY/4 ,ottrnt2/ 8 \ to state [on/„/x/ 2 ,on/„,Y/4 ,on/„/z/s] on input [a/n,,bc/„,] 

outputting fabc/w/1 (where even values o f the numerators X, Y, Z  in the interval states 

correspond to the “0” value for automata substates, and those with odd values to the “ I” 

value such that IntZJ8aIntY/4cJntX/2). The transition [ 1,1 ],[ 1,0,1 ]->[0,1,1 ],[0], for 

example, would correspond to

[VnibcintUofTlnti/2 >°fflnt^4 i°ftrnt6/8 ]^[onrnti/2 >omt2/4 , ° m t 4/8 l[ab£Int]- Note that 

inputs and outputs o f the automaton have to correspond to combined inputs and outputs 

(indicated by concatenating the respective characters) in the 3-switch system.

a/a

'^ b ib
Sz) I

c/c
S3V

F ig u re  4.14 Transitions in the 3-sw itch system  that are m apped onto all 

n autom ata transitions.

A physical state transition corresponding to a combinatorial state transition can then be 

defined as the transition taking place by pressing all 3 switches o f the system during 

subinterval IntZ/ 8  o f Int. Physical states are defined correspondingly for this interval, 

inputs and outputs are combined states o f switches and light bulbs (as described above). 

The rest o f the construction proceeds as in the construction of the Slicing Theorem (e.g., 

the division of the a cyclic interval /  into k  parts in order to account for k  transitions—in 

the case of M  32 such parts are needed, since there are 4 four different inputs for each of 

the 8 possible combinatorial states; e.g., if the cyclic interval is one day, then the 

automaton could spend three quarters o f an hour in one of the Int states). The main
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difference between the above construction and the previous one for the Slicing Theorem 

is that substates are mapped onto distinct spatial regions (i.e., the switches), and that the 

complex state transitions between substates is preserved. It follows, then, that P3 3 5 6  

implements M  in the sense of Chalmers’ definition. As a consequence, generalizing the 

above construction, every CSA with at most m different substates of each combinatorial 

state is implemented by an m-switch system. q.e.d.

This kind of result that one physical system can implement “too many” computations 

is exactly what Chalmers tried to avoid when he proposed his definition against the 

background of Putnam’s Realization Theorem (which states that every ordinary open 

system implements every finite state automaton without input and output). In a sense, the 

Slicing Theorems strengthens Putnam’s program against charges such as “wrong notion 

of causality”, “input/output missing”, “wrong level of description”, “unnatural physical 

types”, etc. All of these, except perhaps for the last one, are dismissed by the Slicing 

Theorems. This adds evidence to the claim that Putnam’s construction, as he notes at 

various places (e.g., Putnam, 1988, pp. 95), essentially points out the lack of appropriate 

state and type formation rules. Ail other points of critique are secondary. Thus, I deny 

Chalmers’ belief that physical states are not the main problem at hand: “there does not 

seem to be an objective distinction between ‘natural’ and ‘unnatural’ states that can do 

the relevant work. [...] I will not pursue this line, as I think the problems lies elsewhere” 

(Chalmers, 1996, p. 312). Although I share his belief regarding the distinction between 

“natural and unnatural states”, I do not think that the problem lies elsewhere. In fact, I 

affirm that states are the problem, as shown by the Slicing Theorems.
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Interestingly, the construction exploited in the Slicing Theorems differs in at least five 

crucial aspects from Putnam’s construction:

1) While Putnam’s construction shows how to implement a particular “run” o f a 

computation, i.e., a particular sequence of state transitions, the above construction models 

the complete state-transitional structure of the automaton. That is why it only needs a 

finite (i.e., bounded) number of states to perform arbitrarily long computations (i.e., all 

possible computational sequences), whereas Putnam’s construction requires an 

unbounded number of states (depending on the length of the respective computational 

sequence). It exploits the fact that at some level of description physical configurations 

can be viewed as recurrent (whereas Putnam used the “Principle of Non-Cyclic 

Behavior” to obtain new physical states).58

2) Tokens of state types such as “switch up on Mondays” can be easily individuated 

(we can check if  it is—currently or at some other time—Monday and we can check 

whether the switch is in position “up” or “down”). These input states have the predictive 

capacity that Putnam’s construction was criticized for; it is known ahead of time, what 

tokens o f these types will look like and how they can be produced (as necessary 

requirement if  one wants to control the input to a system!).

3) State transitions are reliable. Pressing switches is certainly as reliable an action as 

any reliable one can imagine (unless the switch is defective, etc., which can be accounted 

for by adding conditions o f normal operations to the definition of implementation as in 

section 3 of chapter 2). The same holds o f the light bulbs being lit or not lit under the

58Note that plausibility of the principle o f  non-cyclical behavior was one o f  the main points o f attack o f Putnam’s 
argument, see, for example, Chrisley (1994). Without this principle, Putnam’s construction cannot work.
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respective circumstances: given a setup corresponding to the wire diagram, the respective 

light bulbs will be lit reliably if the switches are in a position such that current can flow 

(and neither the battery, nor the wires, nor the light bulbs are defective). Transitions from 

one time interval into the next are obviously reliable as well, as they happen without 

further ado (and rely on the physical laws regarding the permanence o f objects which are 

not subject to internal decay processes and/or external influences).

4) State transitions support counterfactuals. To see this, note that input occurs only 

"■within time slices”, i.e., whenever a switch is pressed down on Monday, say, the system 

will reliably change state into “switch down on Monday”. If it is pushed up again, the 

system will return to state “switch up on Monday”. It can never be case that the system 

receives input on Monday and ends up in a state on Tuesday. Thus, any counterfactual o f 

the form “had the system been in state p, on input in it would have transited into state q 

producing output out” is true for any time slice, and since input driven state changes 

cannot occur across time slices, it is vacuously true for those.

5) Because o f the above and the laws of physics (i.e., circuit theory), the relevant state 

transitions (i.e., those that are input driven) are causal, not only according to a physical 

notion of causation, but to the stronger, counterfactual supporting notion that people like 

Chalmers and Chrisley, for example, require. It could be objected that temporal 

successions of one and the same physical state, i.e., state s at time tn and state s at time 

rn+I, cannot be said to be causal transitions. Granted! But this is true only of “irrelevant” 

state transitions (i.e., e,e-transitions). In automata theory, e,s-transitions are supposed to 

model transitions in a system that happen without further ado: no input is necessary, no
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output is produced, the automaton transits without input from one inner state to another— 

that is why this transitions are called s,e-transitions in the first place. The same is true of 

transitions between two time slices: no input is necessary, no output is produced, the 

system transits from one inner state into another without any external influence. In that 

sense these transitions are not caused by anything. That is why I limited the claim that 

state transitions are causal to relevant transitions, i.e., the ones that are causal. Only 

relevant transitions are mapped onto automata transitions, thus all transitions that are 

“mirrored” in the automaton are causal.

It seems that the only objection left to the above construction is the nature of the 

involved physical states, since the main charges (see Chalmers, 1996, or Chrisley, 1996) 

against Putnam’s Theorem that his notion of implementation is not based on reliable, 

counterfactual supporting, causal state transitions (i.e., that his notiont of causality does 

not support counterfactuals) does not mutatis mudandis transfer to the Slicing Theorems. 

One conclusion to be drawn from the Slicing Theorems would be to disallow temporal 

individuations o f physical states. That way one could savor Chalmers’ notion of 

implementation and explain what went awry in the above construction. This, however, 

seems to me too strong a restriction as there might be cases where temporality is crucial 

in individuating physical states: consider a shared memory between two processors such 

that the first processor accesses the memory during even clock cycles and the other 

during odd clock cycles. To understand what is going on in such a memory (e.g., when 

the value of a memory location has changed “between two successive states without
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further ado” from the perspective of one processor) one would probably introduce notions 

like “even state” and “odd” state to refer to states at certain clock cycles.

There is a better reply to the objection that the unwanted results of the Slicing 

Theorems result from temporally individuated states. Instead of individuating these 

states temporally, one could slightly modify the switch system by adding “a clock”, 

which reliably goes through a fixed cycle of physical states in a given amount of time 

(12*60*60 states per 12 hours, say). Then one can form the same “slices” that were used 

in the switch system to implement arbitrarily complex computations, except that the 

temporal individuation (the temporal slices) is now replaced by “spatial individuation” 

(of the clock hands, for example). By forming combined states such as “the switch at 

5h34’33’ ” (where the time expression is used to fix a spatial position on the clock), the 

clock-switch system can implement very complex CSAs according to Chalmers’ 

definition of implementation using the construction of the Slicing (i.e., to be exact a one- 

switch system with one clock will implement any computation with up to 12*60*60 state 

transitions, and by adding additional clocks and/or increasing the number o f distinct clock 

states, this number can be increased significantly). Yet, it is intuitively very clear that the 

system does not do any computational work.

4.9 General Problems with the State-to-State Correspondence View of 

Implementation

The analysis o f Chalmers’ definitions o f implementation for FSAs and CSAs has shown 

that they do not achieve what they promise, namely to view computation as an abstract 

way of specifying the causal structure o f a physical system. They are insufficient for two
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reasons: first, according to these definitions physical systems do not implement only 

isomorphic computations for a given set o f physical states and their causal relations, but 

rather many different computations. Hence, computations cannot specify the causal 

structure o f a system. In that case one would at least expect that the definitions view 

physical systems as implementing all computations that are bisimilar to their isomorphic 

computations. However, Chalmers’ definitions do not permit this either, since only 

bisimilar computations with fewer states than the isomorphic ones are viewed as being 

implemented by the system. This deficiency was accounted for by distinguishing the 

notion “realization of a FSA” from “implementation of a FSA”: the former is viewed as a 

special case of the latter, in which the automaton “mirrors” the causal structure o f the 

implementing physical system by virtue of its being isomorphic to it, whereas the 

automata being implemented according to the latter are only bisimilar to the causal 

structure of the physical system.

However, this only repairs part o f the deficiency. A much more severe flaw prevails: 

even simple physical systems can be viewed as implementing very complex computations 

(normally exhibited by very complex physical systems) under this definition, contrary to 

what one would intuitively expect! To prove this point, I have devised a construction, the 

one used to prove the two Slicing Theorems, which replaces spatial complexity of 

physical states (in “complex” physical systems) by temporal complexity of physical states 

(in “simple” physical systems such as the switch systems). That way the lack o f spatial 

structure is compensated for by temporal structure and spatially structured causal patterns 

are turned into temporally extended causal patterns.
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Interestingly enough, one could even use switch systems with the above-defined 

“temporally divided” states for real computations: one only needs to add a clock to turn 

non-effective temporal properties such as “the state ofx on Monday” into effective spatial 

properties such as “the state of the all hands” on a certain clock...59

The Slicing Theorems pose a serious threat not only to Chalmers’ definition of 

implementation, but to any state-to-state correspondence view of implementation (as well 

as any semantic view of implementation, for that matter: just substitute “part of the 

system” for “state of the system”), because any such view crucially depends on a notion 

of “physical state” (“physical part”, respectively)— I will refer to both views together as 

“SV/CV”. SV/CVs need this notion to set up a correspondence between the physical and 

the abstract, yet the question of what counts as a legitimate physical state is not answered 

by any of them (as far as I know). SV/CVs can only provide an answer to the 

implementation problem for systems for which a set of physical states is given. If 

physical states are not given, SV/CVs run into insurmountable difficulties: following the 

construction o f the Slicing Theorems, physical states supporting counterfactuals can be 

defined, for which the system implements almost any computation. In short, the reliance 

o f SV/CVs on a notion of physical state is their essential weak spot!

One could object to this reasoning by pointing out that it is not part of a SV/CV to 

deliver a definition of “physical state”. Granted! But how would one decide what

59Jack Copeland, in personal communication, admitted that such systems would compute according to his definition 
o f  computation too (see chapter 3). Interestingly, Copeland believes that these systems are rightfully viewed as 
computing, while it seems to me that they really are not doing any computational work. Surely, they can be used for 
computing, if, for example, a human (or another device, for that matter) presses the switches in the right order at the 
right times, but that does not make them compute by themselves. The situation is similar to humans using an abacus, 
which qua physical devices helps storing computational states—i.e., it functions as some sort o f memory—yet, I would 
claim, the computation takes only place in the system “human cum abacus”, not in the abacus alone!).
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computation a physical system implements whose description does not provide a notion 

of physical state? Is one then to assume that this system does not implement anything?

Physical states of a physical system are normally defined by the theory in which that 

system is described. As it happens with classical fields, there might be too many states 

that could potentially correspond to some abstract, in this case computational, state. In 

order to exclude certain unwanted candidates, one has to define an individuation criterion 

according to which physical states are singled out. This criterion, however, is not defined 

within the physical theory that is used to describe the object, but rather at a higher level of 

description. In the worst case, this will be exactly the computational level, namely in the 

case that none of the potential “lower level” theories can define a property in their 

respective languages such that the set o f states conforming to that property corresponds in 

a “natural” way to the computational state. The potential circularity is apparent: what it is 

to be a certain computational state, is to be a set of physical states which are grouped 

together because they are taken to correspond to that very computational state.

Every SV/CV must, therefore, avoid being 1) vacuously broad (because physical state 

type formations are too liberal), and 2) circular (because individuation criteria for 

physical states are not provided at level lower than the computational).

In the case o f physical fields, one is left with a very pessimistic prospect: there are 

more than countably many different possible physical states according to the state space 

o f fields (for every interval of real-time). Which of those correspond to a physically 

possible object, and which correspond to a given object in a “natural way”? Since there 

are even more possible mappings from physical states onto abstract states, it seems totally 

implausible, if  not impossible, to specify finite criteria that single out the right mappings.
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The only way we could find such a mapping is either by pure chance or by using higher 

level properties that constrain possible objects significantly and hence the pleothora of 

mappings. If we are lucky, then the number o f mappings will be so constrained by these 

properties that we can actually write down the definition of a 

(correspondence/interpretation-)function. But again, this “will work” only by using 

properties defined at levels of description higher than physical fields, yet lower than the 

computational level of description (which must not be used in defining a mapping from 

physical states to computational states, if the task is to find out what kind of computation 

a given physical system implements). One advantage of higher level theories is that they 

supply “higher levef’-objects that can be individuated according to criteria supplied by 

these theories, and properties o f these objects, in turn, could be used to define states.60 

State-to-state correspondences (or parts as label bearers, respectively) would then have to 

be defined separately for individual theories.

Involving higher level theories, however, does not solve the problem of forming 

physical state types if the theory does not provide such a concept. Take a pyramidal cell, 

for example, and its physical description in the language of biochemistry, which does not 

provide a notion of physical state type that could be set in direct correspondence with 

states of connectionist units. How would one go about defining physical state types such 

that the behavior of the cell corresponds to the computation of its “connectionist 

counterpart” and, at the same time, these type formation rules exclude type formations 

that would give rise to “unwanted” computations? This does not seem clear.

60 At the level o f  fields, the question what exactly counts as an individual is a highly debated issue. It is not all that 
clear that Quantum Field Theory, for example, even contains individuation criteria for particles.
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So the main difficulties o f the SV/CV sneak in the backdoor again, if the question 

“How are abstract computations tied to the concrete?” is asked. Even the rephrasing 

“What computation is implemented by a concrete system?” is not sufficient, since it, too, 

assumes a notion o f computation.

Two possible, non-exclusive conclusions are implied: 1) computation is not the right 

kind of explanatory device for causal organizations o f physical systems (and as a 

consequence for theories of mind), and/or 2) SV/CVs are not the right kind of approach to 

a general theory of implementation (as they will fail as soon as a physical theory does not 

provide a well-defined notion o f physical state).

I am inclined to believe the latter, whereas I am somewhat undecided on the former. 

SV/CVs are certainly applicable if physical states are given, which in real-world 

hardware design, for example, is obviously the case. Using the modification to 

Chalmers’ definition (definitions 4.4 and 4.5), one can easily specify the class of CSAs 

that is implemented by various digital circuits, for example. One could even extend this 

definition and define a physical system to implement a computation if  it is bisimilar to the 

FSA realized by the system. This notion of implementation would then encompass any 

computational formalism that provides notions of input, inner, and output state and 

permits one to relate them to physical systems via the isomorphic FSA.

Still, the success of SV/CVs with systems that have been designed so as to allow for 

an easy state-to-state correspondence between physical states (which are given) and more 

abstract states should not distract from their failure in the general case. Because 

computations have to be linked to concrete systems (which are described at a certain
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level) in order to be computations, the implementation-relation must hold between 

computations and levels o f  descriptions o f systems.

We are left with various questions unanswered: which (lower) level is the right one? 

Which level supplies the right kinds of states to be linked to the computational ones? Is 

there a systematic way to 1) find the right level and 2) find the right states/state types at 

this level? A theory of implementation should be able to answer all these questions in a 

systematic way for all possible levels o f description. Any state-to-state correspondence 

or semantic view, however, is naturally limited to a level o f description and a notion of 

state/part at that level (if it exists at all, otherwise the particular choice has to be justified 

with all its consequences...), and can, therefore, not provide any criterion for particular 

choices of levels. Furthermore, a theory o f implementation should provide necessary and 

sufficient criteria to determine whether a class o f computations is implemented by a class 

of physical systems (described at a given level), otherwise the term “implementation” is 

not appropriate. As long as these problems are not solved, constructions like the ones in 

the Slicing Theorems will present a potential threat to any SV/CV, precisely because 

there exist levels o f description at which—paraphrasing a famous dictum by 

Feyerabend—anything computes.
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Chapter 5:

When Physical Systems Realize Functions..

5.1 Taking the Physical Seriously

The main reason for all the difficulties with a satisfactory account of implementation is, 

in my view, that computation is normally defined abstractly at a “level of symbol 

manipulation”, rather than in terms of an abstraction over the physical properties 

determining the functionality o f a physical device. Although for logical purposes this 

approach is necessary, it is certainly not the one taken by computer practitioners, who 

need to define programming languages for the hardware they construct (in order to make 

it accesible and, hence, usable for other people). By abstracting over hardware specifics 

such as particular brands of parts, speeds of gates, etc. they are able to come up with an 

abstract description of what it means to compute on their kind o f  machine. This way 

implementation and computation are defined together and the question of how 

computations are tied to the physical in general does not arise. It is this kind of practical 

wisdom that theories of implementation need to capture.

Even if one willingly granted Turing machines, for example, such a link (assuming 

that there are physical systems that correspond to them, ignoring all the difficulties 

mentioned earlier in this work), they would still be mere models o f what can be done 

mechanically (by a human, a robot, etc.). Gandy (1980), for example, shows that four 

principles underwrite the concept o f “mechanical doability” and that a violation of each
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of these principles gives rise to “Super-Turing” computation. It follows that any system 

whose behavior can be completely described at the level of configurations, changes of 

configurations, etc. and which conforms to these four principles, will be at best Turing- 

computable. It does not follow, of course, that this level of description is the appropriate 

one for what humans can do (if they use scratch paper, but are not bound to using rules, 

say).61

The relevance for cognitive science (assuming CCM) is immediate: suppose brains 

are best described at a lower-than-mechanical level of description L (e.g., a biological 

level), and the mechanical level of description is not sufficient for L. If some of the 

phenomena not describable in terms of “mechanics” are crucial to a theory of mind, then 

either minds are not computational (if computational is meant to be “mechanical”) or a 

different notion of computation is required (e.g., if one wants to describe biological 

systems such as cells, autopoietic systems, neural networks, etc. as “computational”).

Considerations o f this sort have already inspired many cognitive scientists to shift 

their explanatory framework from computational to dynamical, because they believe that 

the “computational level o f description” is not essential to understanding cognition (see, 

e.g., van Gelder (1998)). Although one has to be careful with statements like this, 

because their truth depends on what “computational” means, I would agree that Turing 

machines are not well-suited to describe the behavior of various physical systems at 

lower levels such as chemical levels or even biological levels. And since the class of 

functions computable by Turing machines is the same as the class of recursive functions,

61 Godel (1958), for example, thought that human intuition, especially mathematical intuition, could exceed Turing 
computability, and his hunch is shared by influential logicians and scientists such as Feferman and Penrose.
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it follows that these functions, too, might not be adequate to describe the input-output 

behavior of systems at lower levels of description. It even seems possible that the 

behavior of some physical systems could only be adequately described using recursively 

enumerable functions (certain quantum processes, say).

There is a quite a bit of literature on this issue of whether there are “non- 

computational” processes in nature. Various physicists as well as logicians have 

speculated what such processes would look like (e.g., see Copeland, 1998a, for various 

references). If such processes exist, it will be the job of the engineers to find ways and 

methods to utilize them (no doubt, a computer performing some non-Turing-computable 

function would, besides being revolutionary, be extremely desirable, and not only from a 

scientific point of view). Yet, this is not a conceptual problem, but an empirical issue. 

Whether such processes exist or not does not depend on a logical system, but on the 

-physical properties o f the “real world”. Thus, although it is possible to investigate logical 

properties o f machines that can compute more functions than Turing machines—take, for 

example, the so-called “oracle machines” envisioned by Turing himself (Turing, 1939)—  

it is almost a truism that it will remain a physical problem whether these machines are 

physically possible. If it were possible to utilize their behavioral complexity for 

“computational” purposes, (computer) scientists would willingly extend their notion of 

“computation” to the class of functions “implemented” by those systems.62

This also opens up a new perspective on the relation between mind and computation: 

minds might just be oracle machines! Copeland, in pointing out Searle and Penrose’s 

misreadings of the Church-Turing Thesis, writes:
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“O-machines are digital computing machines. They generate digital output from digital 

input by means o f  a step-by-step procedure consisting o f  repeated applications o f  a small, 

fixed number o f  primitive operations, the procedure unfolding under the control o f  a 

finite program o f instructions which is stored internally in the form o f data on the 

machine’s tape. Thus even if  1) [the claim that the human brain is equivalent to some 

Turing machine] is false, the theory that the brain is a computing machine might 

nevertheless be true.” (Copeland, 1998a, p. 1, comments in brackets are mine)

All o f these considerations together have led me to believe that a different theoretical 

framework is required in order to capture not only accepted, but also potential notions of 

computation. For example, this notion should (in principle) not exclude systems that 

could outperform a Turing machine. Furthermore, it should allow one to define a 

corresponding notion of implementation (for each notion of computation) which explains 

how to link the abstract to the concrete without opening doors to Putnam-like 

constructions. One possible strategy to develop such a framework—the one I will take up 

in this chapter—is to start in the concrete, in the physical, and not in the abstract: take a 

physical theory P and consider its (simple and complex) objects together with their 

properties. P  will supply laws that describe the behavior F  o f a given arrangement of 

these objects—called physical system S—under certain environmental conditions over 

time. Depending on P, objects, behaviors, and environmental conditions will be very 

different. However, every object in P  will be subject to a certain change in some physical 

dimension (its “output”) if  exposed to certain environmental conditions (its “input”). The 

next sections will show how input, output, and behavior of a physical system as described

6 - See also the last chapter o f  this dissertation.
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by a physical theory can be used to distill a (matter-independent) mathematical mapping 

f —the function realized by S—between inputs and outputs of S  by abstracting over every 

physical dimension. This abstraction will not be arbitrary, but determined by P, resulting 

in a computational description C of F. At the same time, the trace to the “real stuff’ is 

not forgotten, C can always be seen as an abstraction of F. Thus, a natural link between S 

and C is supplied by the process of developing C out of F. This process can be viewed as 

providing the implementation criterion for C on S.

The notion underlying the process that eventually will lead to a computational 

description of certain physical systems together with an objective implementation 

criterion is that of “realization of a function”. This notion comes in a variety of different 

forms at different levels of abstraction, one of which will be identified as the 

computational level. Depending on the level of abstraction at which physical systems are 

described, they will realize different functions. Since the choice of the level of 

description always depends on pragmatic considerations, there is no “true and genuine” 

function realized by the system. Only once a level is chosen, then there is a unique 

function that describes the behavior of the system at that level, ft will be the task of the 

following sections to define these levels guided only by practical constraints and 

pragmatic choices. Nothing ontological will be claimed about the process of abstraction, 

except that this progression explicates wisdom slumbering in the practice of computing. 

Yet, it will allow us to see computation not as an abstract phenomenon (“mere syntax” as 

Searle would say, and thus observer-relative), but merely as a very abstract description of 

real-world processes. In other words, once one can agree on the behavior F  o f a physical 

system S  as well as on the level of abstraction at which descriptions can be viewed as
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computational, the computation C implemented by S  will be logical consequence of the 

framework developed here and not observer- or interest-relative. So, the burden of 

interest relativity will be shifted from implementation to the particular choice of the 

physical theory that is used to describe S—the way it should be!

5.2 Setting the Stage: Electromagnetic Fields and Circuit Theory

Let us, then, start with a physical theory at a rather low level o f description, the level o f  

electromagnetic fields, and see how we can develop a notion of what it means for a 

physical system (described at this level) to realize a function. The theory of 

electromagnetism, as axiomatized by the four Maxwell equations, describes the behavior 

o f (moving) charges: how (moving) charges give rise to two kinds of fields, the 

electrostatic and the magnetostatic field, and how these fields interact over time, resulting 

in electromagnetic fields.63 In the simplest case, fields are studied in a vacuum, but 

Maxwell’s equations can be modified account for fields in material media as well as 

across the change across material boundaries. In particular, the theory explains the 

interaction of potentials and currents in spatial regions “filled” with various materials 

over time (e.g., a cylindrical region of space filled with copper). Dividing materials into 

two rough categories, conductors and insulators, one can launch an investigation into the 

nature of different spatial combinations o f materials giving rise to different electric 

properties. Without providing a detailed mathematical derivation, one can imagine how a 

categorization o f combinations of different materials into types with the same electric

63 Here, I assume classical fields for simplicity sake. I am not be concerned with the integration o f  electromagnetic 
fields into quantum field theory (e.g., how particles arise out o f  fields, etc.).
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properties could be attempted (by abstracting over particular material properties such as 

conductance or spatial arrangement such as volume). A cylindrical region filled with a 

given material in a vacuum, for example, will exhibit certain law-like properties with 

respect to the difference in potential between its two ends, if current flows through it. 

Furthermore, it will be possible to extract laws from the study of different such 

arrangements (e.g., Ohm’s law, which describes the relation between potential, current, 

and conductance of such “material regions”).

This abstraction process leads, in the end, to the development o f circuit theory, a 

theory which arises from the theory of electromagnetic fields by abstracting over material 

properties o f spatial regions as well as the regions themselves.64 It considers “closed- 

Ioop” arrangements (i.e., circuits) o f two sorts o f “higher level” objects: active and 

passive components. Active components are energy sources (e.g., batteries), passive ones 

are energy consumers (e.g., resistors, capacitors, or inductors).65 The “electric” 

properties o f components and circuits are expressed in terms of “potential”, “current”, 

“conductance”, “inductance”, “resistance”, “capacity”, “voltage”, etc.66

The reason for choosing circuit theory as a venture point in the current enterprise is 

twofold: on the one hand, circuit theory is motivated by computational practice (although 

it also has some relevance for the neurosciences—see the end of this section), since

64Note that I do not claim that this happens necessarily so or that it happened historically that way.
65 A charged capacitor, o f course, functions as an energy source, too.
66 Notice that what is an electric component (e.g., resistors, capacitors, transistors, vacuum tubes, copper wires, etc.) is 
assumed to be already determined and given. In particular, I will be talking about those electronic objects that I can 
buy in a store and weld into a board with copper connections on one or both sides to build things like radios, 
amplifiers, pocket calculators, and the like. O f course, a star has also a resistance (and, to some degree, resembles a 
resistor) and so does a molecule, but neither o f  them has the right size to be o f use for a device that I can build, and this 
is all that matters if  I want to listen to my favorite radio show or quickly calculate the accumulated interest in my bank 
account.
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computers by and large are built out o f electric components. On the other, it provides 

“basic objects”, which can be individuated according to their properties and combined to 

form circuits, as opposed to electromagnetism, where space points together with their 

charge are the “basic objects” o f the theory. Although one can reduce “circuit talk” to 

“field talk”, a field-theoretic approach would distract from the current goal because of its 

mathematically involved nature. Additional information about certain kinds of materials, 

their atomic make-up, as well as facts from crystallography, atomic physics, chemistry, 

etc. would be needed to describe circuits completely at a level o f fields. Circuit theory 

allows one to abstract over these “physical peculiarities” and assume objects such as 

resistors and capacitors without having to know their physical realization. Yet, one is 

guaranteed that these types of objects (within practical limits, o f course) are readily 

available, i.e., can be built, since circuit theory was developed under the pressure of 

practical, engineering tasks. It, thus, combines the “physical rigor” of classical fields 

with the “engineering view” of idealized circuits, which are both necessary to describe 

actual and possible objects that are metaphysically tenable and physically plausible.67 

For the rest o f this chapter, I will assume circuit theory for all examples, yet allow “P” to 

range over any physical theory in all of the formal definitions.68

67 Besides the fact that all kinds o f  objects can be described by the theory o f  “electronic circuits”, one could even 
doubt that it is clear what “object” means in this case. In other words, one could question the very notion o f “object” 
and argue that circuit theory does not provide sufficient criteria for the individuation o f its basic objects. Then the 
above level cannot be taken for granted, and one has to dig deeper into the metaphysical stuff to find substance and 
defining properties o f objects (e.g., see Smith, 1996). From a pragmatic point o f  view, however, I believe that this step 
is not necessary: there are ways to find out if  something is a (standard) “resistor", say, and even if a “thing” is not 
clearly a resistor, if  it has the appropriate resistance-(and that can be measured) and the appropriate shape, form, size, 
etc. it could be used as one.
68 The term “physical theory” is meant to comprise every theory that describes natural phenomena at a certain level o f 
description in terms o f  “physical” laws such as biology, chemistry, etc.
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Any (physical) theory used to describe real-world phenomena is built upon the 

mathematical framework that has been developed to describe change: the theory of 

differential equations (this is a matter o f fact, not a necessity). Formally, this means that 

the theory consists of all mathematical (and logical) axioms needed for the theory of 

differential equations together with all necessary physical eigenaxioms (i.e., the axioms of 

the physical theory). It will contain additional predicates for different physical 

magnitudes (such as mass, energy, and time, for example) as well as other factors 

depending on the theory and the purpose it is used for. A formal version of circuit theory, 

in particular, could contain predicates like “is_a_resistor(x)”, “is_a_voltage(x)”, etc. and 

relational primitives like “has_resistance(.r,y)”, “is_connected_to(jcj>)’\  etc. Using these 

predicates, one can formulate general laws such as

Vx(is_a_resistor(x)->3!>’(is_a_resistance(y)Ahas_resistance(x:iy))).

Given this axiom, a function symbol can be introduced for the resistance of a component, 

and this function in turn can be used to define Ohm’s law.

5.3 What is Means for a Physical System to Realize a Function

Physical theories, as already noted, describe the behavior o f physical objects (and 

possible arrangements of them) under certain environmental conditions over time. What 

a physical object is depends on the theory under consideration. Each theory will supply a 

notion of primitive object (even if  this can only be determined by looking at the domain 

the quantifiers o f the theory range over). I will use the term “physical system” to 

emphasize this theory-dependence. Circuit theory, for example, can describe the 

behavior o f the system “resistor” when a voltage is applied. This can be also viewed as
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describing the “input-output function” of the component: take a 2 Q resistor (the 

“component”) to which a voltage of 200 mV (the “input”) is applied. The current flow 

then—according to Ohm’s law V=R*I—is I mA (the “output”).69 So, the resistor has the 

property o f “embodying” the function F(x)=x/2 from voltages to currents.

What does it mean, therefore, to “embody” a certain function, to “have” a certain 

function, to “function” in a certain way? It means to obey the laws o f  physics that are 

described by that function. So, each concrete, individual resistor of 2 Q will under an 

applied voltage of 200 mV yield a current o f 100 mA—this is what the laws of physics 

predict (and if they are correct, this is what will happen modulo some practical problems 

such as “purity” of the material, exactness o f the applied voltage, etc. which I will ignore 

for the moment). There are obviously critical notions involved in the above statement 

such as “predictions”, “law obeying”, maybe even “counterfactual”, but I will not be able 

to go into details here.70 However, exactly how the resistor “achieves” this mapping is a 

different question and can be answered by looking at the chemical structure, the 

arrangement of molecules, facts about electrons, etc. At this point we are only interested 

in the “wAat”-question and the answer to it does not require theories at “lower levels” of 

description.71

There is a sense in which the above resistor realizes the same function as a copper 

wire that is split into two parallel wires at some point: according to Ohm/Kirkhoff s laws

69 Notice that Ohm’s law is a special case o f a differential equation where A/=0, i.e., where time is left out.

70 Actually, one reason to pursue this particular line o f construction was exactly to avoid arguments about notions 
such as “counterfactual”, “(natural) law”, “law-likeness”, “obeying a law”, etc. Consent on what it means to “obey a 
physical law” or “to be a law o f nature” is simply presumed.
71 It seems to be a characteristic property o f  levels o f  description that if  at a given level n a “what”-question can be 
answered, the corresponding •'how”-question has to be answered at a lower level (if  it can be answered at all).
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the current will split in half (assuming they are joined together or fed into equal loads). 

So if the current at one end was 100 mA, then it will be 50 mA at each of the two other 

ends. The function “realized” by this wire is then F{x)=x!2 from currents to currents, as 

opposed to the function F(x)-x/2 from voltages to currents. So, although the physical 

dimensions that are used for input and output (i.e., the domain and the range of the 

function that describes an aspect of the system under consideration) are different, the 

abstract mapping between those objects is the same. If, therefore, one drops the physical 

“qualities” (dimensions such as voltage or current) in the description of the “function” of 

the components and just considers the “quantities” (magnitudes o f the physical units), 

then one can describe the “input-output”-function of both components as J{x)=x/2 from 

numbers to numbers {Reals to Reals, say, given that voltages and currents are usually 

defined as Real values in circuit theory). In short: dimensions are dropped, units are 

retained.

This step of abstraction is critical to the whole enterprise and I will, therefore, develop 

the argument in greater detail. Eliminating physical particulars of inputs and outputs will 

allow us to describe what resistor and wire have in common with respect to their 

mathematical (functional) description, namely that “the resistor and the wire both realize 

the function y(x)” (in different physical ways, of course). The resistor realizes f i n  the 

sense that for every voltage x, if  x is applied to the resistor, a current of x/2 will result by 

the laws o f physics; the wire, in that for every current x, if  x is applied to one end of the 

wire, a current of x/2 will result by the laws of physics on each one of the other ends. 

What is, therefore, different is the domain of /  (since in one case it is the set of all 

currents, in the other the set of all voltages), what is the same is the syntactic structure of
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(the definition of) the function. There are two ways to express the difference between 

voltages and currents, 1) syntactically by using a two-sorted logic: J[v)=v/2 and J[a)=a!2 

(where “v” is a variable ranging over volts and “a” a variable ranging over amperes), and 

2) semantically by using a model-theoretic interpretation W(x)j{x)=x/2 and 

VA(x)J(x)=x/2 (where V denotes the set of voltages and A the set of other amperes). In 

the former case, the algebraic field axioms (within the formal theory) coincide for both 

sorts.72 Hence, for r= 1 in Ohm’s law VvVrBIa v/r=a (where “/” defines the “division of 

voltages by resistances”), one obtains Vv3!a v=a, which implies the extensional identity 

of V and /f.73 It follows that voltages and currents are interchangeable (within the formal 

theory). In the latter case, V and A can be shown to be extensionally identical using the 

same idea: y= 1 in V V{x)VR{y)3\A{z) xly=z implies W (x)3\A(z) x=z and, hence, the 

extensional identity of both predicates. Therefore, in either case, one arrives at the 

mappingy(x)=vc/2 from Volts to Volts, say.

Ideally, however, one would like to arrive at something like the mapping J(x)=x/2 

from Reals to Reals, since there are formal (physical) theories in which no “law” exists 

that connects different physical quantities (e.g., Newton’s second law F-ma can express 

the same relationship J[x)=x!2 from “forces” to “accelerations”, but if  it is added to circuit 

theory together with the fact that components have a mass, there will be no formal axiom 

that relates forces and voltages, or forces and currents for that matter).74 And even in

72 With “field axioms” I mean the set o f  axioms that describe properties o f  voltages and amperes with respect to 
“(voltage/current) addition” and “(voltage/current) multiplication”. This axioms are necessary in order to define the 
“mathematical” properties o f  volts and amperes...
73 Note that I left out quotation marks around all formulas in favor o f  readability.
74 A radical position would, o f  course, maintain that if  there is no such law then there is no reason to assume that both 
qualities can be identified with respect to their quantities. In that case, “realizing the same function” would be a notion

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

those cases one would like to view the “quantitative” sides of forces and volts as being 

the same. One strategy is to argue that physics uses a mathematical language to describe 

concrete objects and that both volts and forces are modeled by Reals in that language.75 

This opens the discussion about whether Reals are the “right models” for physical 

quantities, etc. Another argument comes from model theory stressing the fact that two 

sets are identical up to isomorphism (with respect to the field operations “+” and “*”), if 

they satisfy all field axioms. It follows that a model where the set of Volts is the set of 

Reals is as good a model as one where the set of Volts is the set of Rationals, since the 

extensions of the predicates “V" and “/I” are isomorphic.76 This view depends on one’s 

stance on issues like “standard interpretation” and “standard models” (and is related to 

questions like “How are the real numbers constructed?”, “What are real numbers, sets of 

natural numbers or limits of Dedekind cuts?”, or “What is the standard model o f real 

numbers?”). A third possibility is to stay within the syntactic realm (of the formal 

theory). Then one can treat variables of different sorts as being of yet another sort, 

namely the sort “R ear, if  all field axioms are defined for all o f them. In the one-sorted 

case, one can substitute “Real(x)” for every other predicate restriction of a quantifier (e.g., 

“\/Real(x)...” for “VF(x)...”), if all field axioms are defined for the predicate.77 That

confined within the boundaries of one physical theory. It would not be possible to compare different systems 
described by different theories with respect to the function they realize.
75 It is an interesting fact that we are completely used to talking about “quantitative physical properties” in terms o f 
numbers, so used that it seems impossible to leave numbers out: all physical properties have a qualitative and a 
quantitative aspect (e.g.. 100 kg or 20 m/sec). One likely reason is that the language o f  physics is built upon the 
language o f mathematics, i.e., the language o f (real/complex) analysis. There are, however, other ways o f defining 
quantitative aspects in physics (e.g., nominalizing physics in the sense o f  Field). Hence, a mapping from volts to Reals 
only seems to be an “identity” mapping.
76 This is, o f course, only true for the field axioms. If additional axioms are added (e.g., that every quadratic equation 
has a solution), then the Rationals might become excluded.
77 Formally, this means that the theory is either extended by another sort plus all the axioms for that sort or that a new 
predicate is introduced together with all relevant axioms.
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way one can avoid being forced to take a stand on either physical modeling paradigms or 

whether “identical up to isomorphism” is sufficient to “nail down” the set of Reals (i.e., if 

isomorphism is sufficient to determine a set of objects or if “more” is needed). Hence, I 

will use the term “syntactic isomorphism” in the following to emphasize that I have this 

third syntactic alternative in mind, even though I will treat isomorphisms by and large 

semantically for the sake of expositional clarity.78

The “common structure” of the two functional descriptions F  and F  for resistor and 

wire, respectively, can now be viewed as the mapping f{x)=x/2 from Reals to Reals. The 

“abstraction” over the physical dimension is achieved by supplying two syntactic 

isomorphisms: the input encoding I{x) from voltages to Reals and the output encoding 

0{x) from currents to Reals. Figure 5.1 depicts the relations among F , f  I  and O (in this 

case for the resistor, but it really works for any physical system).

/

F - the physical 
description (= 
Ohm’s law) for a 
2 Ohm resistor in

■> I- \r )

Figure 5.1The relation between the resistor and the function it realizes: 

given a certain Real r, the value / fr)  is then obtained by taking the 

encoding o f  the input l{r), applying it to the resistor, and then decoding 

the output F{r'(r)), using the output encoding, resulting in 

CT\F{l'\r))), which is equal to j[r).

78 Note that this way even nominalists who are not committed to the existence o f  Reals can accept the following
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This suggests a general/generic definition of what it means for a physical system S 

described by a (physical) theory P to realize a function f 79

Definition 5.1: A function/ with domain D and range R is realized by a physical system S  

(describable in a theory P) if and only if the following conditions hold:

1. There exists a (syntactic) isomorphic mapping /  from the “input domain” of S  to 

£>80

2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S  to 

R

3. There exists a function F  that describes the physical property (=behavior) of S  for 

the given input-output properties (i.e., F  is a mapping from the “input domain” of 

S  to its “output domain” described in the language and by the laws of P) such that 

for all inputs x  the following holds: 0{F{r\x)))-J{x).

Note that just requiring bijective mappings /  and O is not enough to determine /:  let 

I{x)=x for all x  except for /(1)=0 and /(0)=1 (and the same for O), and F(x)=x/2. Then 

f l  )= 0(F (f 1 )))=0(F(0))=0(0)=1, although/(I)=l/2 would have been the correct value.

definitions.
79 Cummins (1989) defines a notion called “a device satisfying a function”, which prima facie  looks very similar to 
my “a physical system realizes a function”. There are two main differences, however first, Cummins defines the 
relation o f satisfaction only for functions that have the same input and output domain as the physical system, and 
second, he requires that input-output criteria for a given device can be specified which will determine whether a given 
state o f the system is an output value and, if  so, which state the corresponding input value was. His definition does not 
use a physical description o f the device (which would eventually lend itself to a functional specification), but involves 
counterfactuals (to specify “state-transitions”), and in the end falls prey to Putnam’s construction (since it does not 
specify the level o f description o f  the physical device).
80 One could “relax” the mapping by requiring that D only be a subset o f the input domain o f 5, thereby allowing the 
system to also realize functions that are “less complex” (in very much the same manner that the identity function over
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One could even argue that “isomorphism” is still too weak, since it does not distinguish 

between /  and all P such that r(x)=a*I(x)+b for all a, b in the domain of /  (see also 

Cummins (1989), pp. 102). The same is true for the output encoding: 0'{x)=c*0{x)+d 

for all c, d  in the range of/ .  Therefore, any one of the functions/ ’(x)=cf(ax+b)+d, i.e., 

c(ax+b)/2+d (which reduces to a'x/2+b' for some a' and b') seems to be a possible 

candidate for the function realized by F. However, not all of them are reasonable, since 

f \x )= x  for a1=2 and b'=0, for example, and this obviously defeats the purpose of the 

resistor. In a way, there is only one (isomorphic) mapping that can do the job, the one 

taking “0-volt” to “0”, “ I-volt” to “ 1”, /z-volt (where “n” is defined as the sum of n “1- 

volt” elements) to n, etc. This also suggests an answers to a similar problem posed by 

Cummins, who introduced the notion “direct interpretation” for a particular isomorphism 

between symbolic and physical input/output, which he admittedly could not define 

(Cummins, 1989, p. 104).

The above definition, being cast as a schema (parameterized by the theory P) to allow 

for greatest possible generality, is naturally quite vague. It can neither specify what 

“physical system” means (let alone its behavior) nor what the inputs and outputs are for 

that system, but that is not its purpose anyway. These “empty places” will have to be 

filled in with particular values from the respective theory P  to make the definition 

complete. In the above examples, one would substitute “circuit theory” for “P”, 

“resistor” for “physical system” together with the appropriate inputs and outputs (i.e., 

voltages and currents at the two ports o f the resistor) as described. Other problems,

the Reals contains the one defined over the Rationals which in turn contains the one defined over the Integers). See 
section 5.6.
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however, such as the (short) time lag between the point of application of the 

voltage/current and the current on the output side (electrons moving at almost the speed 

of light), or the range of functionality of the physical system, require attention and will be 

tackled as we start to mould this definition guided by practical constraints.

5.4 Analog Electric Circuits

So far, we have talked about the fact that electronic components can be described by an 

“input-output” function (which will naturally differ from component to component). 

Each individual function is rather restricted, hence quite simple. So in order to allow for 

more complex functions, one could consider more complex arrangements of these 

components (systems of components). Take, for example, high-pass filters (consisting o f 

a resistor and a capacitor) which realize functions from frequency to frequency that will 

be the identity function for high frequencies and the constant function flx)=Q for low 

frequencies. One could also consider systems that change their input-output behavior 

depending on other external factors (e.g., resistors change their resistance dependent on 

their temperature). In particular, these external factors might be exploited to make a 

system more versatile. Take, for example, an amplifier which contains a potentiometer to 

allow for adjustment o f the amplification factor. It will then realize the function 

fp(x)-x*p (where p  is the amplification factor, 0<p<=100, say). Notice that this function 

is parameterized by and dependent on p .81 These kinds of functions are especially 

practical, because they allow a single system to realize multiple functions; in other words,

8 1 It is worth pointing out that parameters differ from inputs in an essential way: they are normally adjusted until a 
desired value is reached (e.g., the volume of the amplifier before the guitarist starts to play), and then they remain set
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they make it a “multi-functional” system. Every radio, for example, is such a multi­

functional system, being capable of receiving multiple channels and extracting the low 

frequency information that was coded in the high frequency at different volumes (its 

function is parameterized by “volume control”, “channel selection”, etc.).82

Although all components work in the real world and are, therefore, subject to time 

and space constraints, I have not taken either into account. Take, for example, a delay 

circuit (which outputs incoming signals, i.e., voltages, after a certain delay d). This 

system seems to realize the identity function J[x)=x, but we would agree that it differs in 

an essential way from a single copper wire (which also realizes the identity function): the 

former only computes identity if time is left out; otherwise it realizes the function 

J(x,t)=gx(t-d) (where flx y )  is 0 for all y<d and gx(t) is the function that describes the value 

of jc at time t). This function is much more complex than the identity function, which 

now can be seen as special case when rf=0.83 Since time dependencies between input and 

output do not have to be constant either—just take a delay where the delay factor is a 

multiple of the magnitude of the input signal—even sophisticated input-output behaviors 

(with respect to time) are possible, once time matters. Thus, the definition of “realization 

of a function” has to be augmented by two time factors: an abstract time which is attached 

to the function/and the real world time as described by P. In the following “RealTime”

to this value, whereas the input will continue to change. This is, of course, only a rough cut, but it hints at the role of 
parameters in reconstructing the concept o f “programs” from physical peculiarities o f  certain systems.
82 Adding adjustable parameters to physical systems actually marks a crucial step in my endeavor o f representing the 
computational story. Once the transition from realizing one function to realizing multiple functions has been made, it 
is only natural to ask: “What class o f  functions does a system realize?” In the extreme case this class might turn out to 
be the whole class o f  functions itself (for a given definition o f  "realization of a function”). Those systems (the 
existence o f which has to be argued for, o f course) could then be called "universal” (with respect to the given 
definition).
82 If time is taken seriously, then no physical system will ever realize the identity function, since d  will never be 0.
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will always denote the set o f times derived from the theory P (e.g., the projection of the 

forth coordinate of space-time), whereas “Time" is supposed to denote the set of abstract 

times (intervals or points).

Another important factor is the physical condition of the system when input is 

applied, since, in most cases, the input-output behavior of the system will depend on it. 

The output o f a fully charged capacitor for a given input differs significantly from its 

output for the same input if it is uncharged, for example. Hence, it is essential that the 

physical description of the behavior of a system also contain a (complete) description of 

its physical condition at the time when the input is applied. I will assume from now on 

that this description of the physical condition is part o f the description of S  (e.g., the 

initial conditions for a dynamic system).

Finally, it has to be assumed that the physical system under consideration behaves 

“normally” throughout the interval during which inputs are applied and outputs are 

measured. If environmental conditions are such that the laws that describe the behavior 

of S  (i.e., in normal circumstances) do not apply any longer, the system does not work 

“normally”. Obviously, this notion involves agreement on what “normal behavior” 

means: “[..] fixing the conditions o f normal operation is crucial for making determinate 

claims about what function a system is computing” (Stabler, 1987, p. 10). How one can 

reach such an agreement is yet another issue. I tend to follow Hardcastle’s suggestion 

that no principled answer is available (Hardcastle, 1995, p. 306). Engineering practice, 

however, usually does not have these theoretical concerns and agreement whether or not a 

system is behaving properly is reached guided by pragmatic considerations such as 

“reproducability of a behavior”, “usability o f a behavior for building devices”, “reliability
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of predicted behavior”, etc. I will, therefore, ignore issues of explanation in the 

philosophy of science that normally arise in the context of ‘‘normal behavior o f physical 

systems”, but instead assume that there is an agreement at least among engineers on what 

it means to “behave normally” for all systems under consideration (it is very likely that 

the physical description o f systems is not very reliable if no such criteria are available in 

the first place).

Definition 5.2: A function /  with domain DxTime and range RxTime is realized by a 

physical system S  (describable in a theory P) if and only if the following conditions hold:

1. There exists a (syntactic) isomorphic mapping /  from the “input domain” of S  to D

2. There exists a (syntactic) isomorphic mapping O from the “output domain” o f S to  R

3. There exists a (syntactic) isomorphic mapping T from RealTime to Time

4. There exists a function F  that describes the physical property (=behavior) o f S  for the 

given input-output properties over RealTime (i.e., F  is a mapping from the “input 

domam”xRealTime o f S  to its “output domain"xRealTime described in the language 

and by the laws of P) such that for all tsTime  and all xsD  the following holds: if 

F(rl(x),T\t))=<y,r>, then <0(y),T(r)>=fix,t) (for _ye“output domain of 5” and 

reRealTime).

This straightforward augmentation has wanted as well as unwanted effects. The input- 

output behavior of a system is now described as a functional relation between two graphs: 

the graph o f the input signal and the graph of the output signal over time. This way, the 

temporal behavior of a system can be completely described. Suppose, for example, that it
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takes time d  for the electrons to pass a wire, then the function realized by the wire is 

basically the one described above for the delay. However, abstract functions now have a 

“time” attached to them and it is not quite clear what it means to have a “timed” version 

of the addition function, say. One possible answer is to argue that physical systems 

simply do not realize “timeless” functions (i.e., functions from timeless input to timeless 

outputs). In other words, every input to a physical system has to happen in time and 

hence the function which is realized by the system has to have a time parameter attached 

to it (e.g., a Real parameter) .84 In some cases this time parameter is exactly what 

distinguishes one system from another; given a delay circuit with 1 0  msec delay and 

another with 15 msec, dropping this parameter would mean no longer being able to tell 

the two systems apart.85 Often, however, the time relation between input and output does 

not matter. Two wires, made of different material with different lengths, might 

(theoretically) still have the same resistance (except that the output is sooner available in 

one wire than in the other). In this case, we would like to ignore the time lag between 

input and output in order to be able to speak of “the same function that both realize”. So, 

we first have to define what it means for a system to realize a “timeless” function:

84 This point has been stressed by adherents o f dynamicism as one of the major shortcomings o f  the standard notion of 
computation: computations are defined in terms o f computational steps, not in terms o f time (e.g., see van Gelder, 
1998).
85 This idea could eventually give rise to a very different approach to computation, an approach that is essentially built 
upon the temporality o f  physical processes. Abstraction would, o f  course, be possible in many directions (e.g., 
towards digitality, see the next section), but duration and temporal order, being central, defining concepts, could never 
drop out during an abstraction process. This view on computation might come closer and do more justice to the 
behavior o f what are called “embedded systems” (but I will not dwell on this here). Interestingly, operating or real­
time system designers have been making a living out o f coping with real-time constraints for quite some time.
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Definition 5.3: A “timeless” function J(x) with domain D and range R is realized by a 

system S  (describable in a theory P) if and only if the following conditions hold:

1. There exists a (syntactic) isomorphic mapping /  from the “input domain” of S  to D

2. There exists a (syntactic) isomorphic mapping O from the “output domain” o f S  to R

3. There exists a function F  that describes the physical property (=behavior) of S  for the 

given input-output properties over RealTime (i.e., F  is a mapping from the “input 

domain”x^ea/r/we of S  to its “output domain”xRealTime described in the language 

and by the laws of P) and there exists a “delay-fiinction” d(x) from inputs to times 

(derived from F) such that for all reRealTime and all xeD  the following holds: if 

F{r\x),r)=<y,r+cl{x)>, then 0(y)=f(x) (fo rve“output domain o f S” ) . 86

Notice that the time delay of the output is defined as a function of the input because the 

relation between time lag and input will not be constant in all systems, but may depend 

on specific inputs (e.g., if input and output to a capacitor are currents, then the capacitor 

will produce delayed output depending on its capacity). This definition can then be used 

to show that both wires discussed above, in fact, realize the same “timeless” function 

f[x)=x\ there exist two delay-functions d,(x) and d2(x) (from inputs to times), namely 

c/,(.r)=0 .0 1  and r/2(x)=0.015 for all inputs jc, such that ifx  is the input to both systems at 

time t, then one system will output x  at time t+d,(x) and the other will output .r at time 

t+d2(x). The last step accomplishes a crucial abstraction: the actual duration, the link

Note that if  d  were totally unconstrained, very strange time lags would be allowed in principle. Fortunately this is 
not the case, since the physics o f  the system (of components in this case) will put restrictions on the time-dependencies 
between input and output (such that there will be no “jumps”, no “points o f  discontinuity”, etc., the function will rather 
be “smooth”, “continuous”, etc.): time dependencies will be law-like. More precisely, d{x), being extracted from F, 
cannot be a “strange” function without rendering the whole system abstruse, if  not absurd.
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between input and output, the “behavioral” processes that the system exhibits when an 

input is applied, resulting in a delayed output, is neglected in favor of a “timeless” 

mapping! This way various different systems will realize the same timeless function 

independent of the time lag between input and output, i.e., their “speed”. It now becomes 

possible to compare different systems with respect to their “functionality”, when time 

does not matter.87

Three remarks seem necessary at this point:

1) Physics certainly places restrictions on the domain of the input, the domain o f the 

output, and the system itself. For example, one cannot expect to apply arbitrarily high 

currents to a wire of a given size, not only because it would be hard to generate them, but 

also because the wire would melt. This kind of dependence automatically delimits the 

range of the abstract function that a physical system is able to realize. So, strictly 

speaking, a wire that realizes the identity function according to the above definitions does 

not realize the whole function, but only a part o f it (the part in which the wire “operates 

normally” according to the laws of physics; in the other part it will, o f course, still obey 

the laws of physics, but different factors will come into play, and the original equations 

will no longer apply). There are also physical reasons why certain components have to 

have (at least or at most) a certain size (e.g., a capacitor that can store the charge of 500 F 

will be too big to be soldered into a standard circuit board). These constraints, in turn, 

might have an influence on the time-factor o f the system, as space and time are 

inseparably interwoven.

87 This is again a commonplace for computer practitioners: a PCs with a 133 MHz CPU and one with 200 MHz CPU 
(other things being the same) differ only in speed, but not in functionality.
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2) There is also a limit to the accuracy with which an input signal can be generated 

and an output signal can be recognized (see also Haugeland, 1982). This problem results 

from the limits of measurability of physical magnitudes; no measurement will be 1 0 0 % 

exact, but will always contain an error—i.e., will be within some (small) range of the 

actual value. Hence, from a practical point of view, the mere knowledge that a certain 

circuit actually realizes a very complicated function might not be of great help if there is 

no way of making inputs precise enough and/or reading off its outputs with sufficient 

precision.

3) One final remark concerning the nature of electrical circuits. When one hears 

“electric component”, one automatically associates this term with man-made parts that 

are used to solder circuits. Thus, one implicitly assumes a certain physical structure: 

silicon-arsenide molecules, gold wires, etc. And, in fact, at the beginning of this section, 

I suggested exactly that. However, one could broaden one’s perspective and also 

subsume “natural” (i.e., non man-made) electrical components and circuits. In particular, 

one could view neurons as circuits with electrical properties (a description of the 

functionality, of course, will include laws of chemistry, cell-biology, etc.). Given their 

electrical properties and the nature o f their inputs and outputs, neurons then realize 

certain functions (the ones that can be related in the above sense to their physical make­

up). And the fact that neurons are made of “biologically describable” stuff does not mean 

that there might not be a man-made “artificial neuron” (possibly made out of inorganic 

substances) with the same properties (or if  not entirely the same, then at least with respect 

to the input-output behavior) that in turn will realize the same functions. So one way to 

understand natural cognitive systems is to analyze what functions neural circuits realize,
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at exactly the electric level of description. These functions can then be compared (with or 

without taking time into account) with the functions realized by artificial systems, or 

analyzed mathematically. In any case, it will be possible (once the physics o f neurons is 

fully understood, if that is possible...) to determine the class o f functions that are realized 

by neurons. And that, in turn, will eventually allow us to look at the complex input- 

output behaviors of networks of neurons (which then can be described as possible 

combinations—such as compositions, iterations, etc.—of the class of functions realized 

by a single neuron).

5.5 Digital Electronic Circuits

The last section showed that the electric level of description allows us to describe a vast 

variety of complex circuits together with the functions they realize. However, I have 

already mentioned that theory is only part of the story, and that practice is quite another. 

Although one can theoretically define devices that realize very interesting functions, it 

might not be possible to build and/or detect them (due to a lack of sufficiently precise 

tools, measurement instruments, etc.). Another factor to consider is the impact of the 

environment on real-world devices. The influence of noise levels and other disturbances 

might prevent the circuit from functioning according to the “idealized” laws of physics 

(“idealized” in the sense that all possible environmental influences are normally not taken 

into considerations in standard formulations of physical laws when used in practical 

settings. . . ) . 88 Hence, every description will have a “small” error term s attached to it for

88 Interestingly, the proof o f  Putnam’s Realization Theorem relies on the so-called “Principle o f  Non-Cyclical 
Behavior”, which is true o f systems that are not shielded from environmental influences.
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the margin o f error within which the system’s behavior cannot be exactly predicted. 

However, once such an error boundary is given (together with reliable physical 

conditions that the system will stay with sufficiently high probability within these 

boundaries taking the environment of the system, etc. into account), then one can use 

these systems for an inquiry into the nature o f the functions they realize. The main 

difference now (compared to the previous definition 5.3) is that the output of such a 

system will not be the same under the same input conditions, but always within a certain 

interval (actually, the same will be true for the input as well, since it is practically 

impossible to generate arbitrarily precise inputs—or so at least it is commonly believed).

This change in precision (i.e., the relaxation of the constraints) has to be taken into 

account in the formulation of a new version of the definition “realization of a function”. 

Note that four different error terms will have to be defined in advance (edjn, £dout for input- 

output magnitudes and etin, stout for input-output times):

Definition 5.4: A “timeless” function fix) with domain D and range R is (practically) 

realized by a system S  (describable in a theory P) with sdin, for input-output 

magnitudes and s,jn, s^ , for input-output times if and only if the following conditions 

hold:

1. There exists a (syntactic) isomorphic mapping /  from the “input domain” o f S  to D

2. There exists a (syntactic) isomorphic mapping O from the “output domain” o f S t o R

3. There exists a function F  that describes the physical property (=behavior) o f S  for the 

given input-output properties over RealTime (i.e., F  is a mapping from the “input
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domain”x/tea/77me of S  to its “output domain”x/?ea/77me described in the language 

and by the laws of P) and a “delay-function” d{x) from inputs to times (derived from 

F) such that for all reRealTime and all xeD  the following holds (for notational 

convenience abbreviate the error interval for y  determined by e as 

INT(y,e)=,Jef{yly-E<=y<=yfe}): if  f ’( / 1(rNT(.r,8din)),INT(r,eljn))=<r,Z>, then

0(  y)c:INT( / { x ) ^ ^  and ZcINT(rfc/(.v),etou[) (for f c “output domain of S"’) . 89

This definition works in a practical setting as follows: suppose the system S  is given 

together with a physical description of its functionality F  and measurement errors sdin, sdou, 

for the input-output magnitudes, and enn, s!oul for the input-output times. For every input x  

to the system (which could be anywhere between /'(.T-sdin) and T'(x+sdjn)), the output 

needs to be within (? 1(/(jc)-ed0J  and (7'(/(.t)+sd0U[) (under the given mappings /  and O, of 

course). If/  (and F  for that matter) is unknown, then it can be approximately determined 

by repeatedly applying various values of x  to the system. Engineers, for example, when 

they measure voltages at different places in a circuit in order to find the reasons for the 

system’s improper functioning, use implicitly a definition of the above kind. In general, 

every measurement will reach the limits o f precision at some point, and then the 

“original” value can only be “estimated” from the results of many different measurements 

(within a certain interval).

Two notational remarks: I used LJ[X)' (for a set X  and a function J) to mean ‘ \j{x)\x&X\ \  ‘<X,Y > ’ to denote the 
Cartesian product of.If and Y. Also, if time errors depend on inputs x, this can be accounted for by using error function 
terms (such as etjn(.r) and EtoutW) instead.
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Although this definition seems more appropriate given practical limitations, it is still 

not satisfactory. The most urgent problem is certainly one that cannot be accounted for 

by a definition in principle: what if the errors are (too) large? Then either the 

(input/output data-entry/measurement) instruments have to be refined or the system is 

probably of no practical use (independent of the function it theoretically realizes...). If 

we restrict ourselves, therefore, to systems with practically acceptable error margins, then 

the following three increasingly important shortcomings call for improvements:

Firstly, notice that the range of data-entry/measurability is limited for every physical 

system (as already mentioned at the end of the previous section). From a practical point 

of view, there is not even a single physical system that realizes the addition function for 

all integers. The best that can be hoped for are systems that realize parts of that function. 

So, further restrictions have to be imposed on inputs and outputs: the domain of the 

abstract function has to be restricted to the interval which is determined by 1)

the data-entry/measurability constraints of devices producing the inputs and measuring 

the resulting outputs and 2 ) the range within which the physical system functions 

normally according to the laws o f physics (a resistor, for example, does not behave 

normally when it starts to melt because the applied current is too high).

Secondly, the relation between input and output errors has hitherto been neglected. 

The only requirement imposed was that they be small enough to be of practical use. 

However, their relation becomes critical as soon as networks o f circuits (which are 

constructed by connecting outputs o f some circuits to inputs o f others) are considered. 

Assume that three serially connected resistors form a circuit. Suppose that all resistors 

have an output error which is 10 times greater than their input error. Then the output
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error of the whole circuit will be 1 0 0 0  times the input error (and that might already be 

unacceptable). It seems, therefore, reasonable to require that the output error be less than 

or equal to the input error to allow for the construction of complex circuits, while at the 

same time keeping the overall error small.90

Lastly, but most importantly, there are generally problematic cases in which the 

difference of two inputs to a system, x, and x2, whose “error intervals” [jr,-8 lnrx,+em] and 

[xj-e^+Sin] overlap, is crucial. It is not clear at all how such a system could be of 

practical use. The main problem is that the function/ which is supposed to be realized by 

S  will be real-valued (as a consequence of P for most theories P), whereas the function 

describing the system’s behavior (in terms of measurability) seems rather discrete-valued 

(a function from intervals o f Reals to intervals of Reals with interval size 2*s). Or to use 

a metaphor: the abstract function is too “precise” for its “smudged” worldly counterpart. 

As long as there are overlapping regions between intervals in F  which correspond to two 

distinct values of f  there will be cases in which, given a value x ’ in an overlapping 

region, one can neither determine the original x  nor the resulting J{x).9x Hence, it would 

make more sense to let /  take values in the Integers (or Rationals) rather than the Reals. 

This would allow one to map discrete values to unique intervals if, in addition, the data- 

entry/measurement errors are small enough so the intersection of any two images of

90 Note that there are really fivo output errors involved: the first is determined by the exactness o f the measurement of 
the output—this is the one we have considered so far. The second is determined by the physical system itself, by the 
degree to which the system deviates from its formal description (e.g. imperfection and/or impurities o f  the material). 
Although the (overall) output error is really a combination o f both individual errors, for theoretical purposes one error 
term that comprises both suffices: simply take the product of both error terms (especially since it might not be clear 
which error actually contributes more/most to overall error).
91 The reason is that no bijection exists (hence no isomorphism either) between the Reals and disjoint intervals o f  the 
Reals o f  size 2*e for any e>0.
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discrete values, i.e., intervals, is empty. In such a system, all values o f /  could be 

measured/produced, hence the system would not only theoretically, but also practically 

(and verifiably) realize the function/(of course, only within the boundaries of 

Notice that this last requirement implies that only certain finite (“timeless”) functions can 

ever be totally realized (since there are smallest and largest values determined by the 

errors and/or physical possibilities o f data-entry/measurement such as energy constraints, 

uncertainty, observability, etc. which it turn are determined by size constraints of the 

physical system...).

Taking all three modifications into account, we can define what it means to realize a 

part of a discrete-valued function/ for given error terms and etimc (which describe the 

measurement error of data and time, respectively—the output error is now assumed to be 

at most the input error, hence only one error term is needed) : 92

Definition 5.5: A “timeless” discrete function fix) with domain D and range R is

(practically) realized within [ x ^ ^ J o D  realized by a system S  (describable in a theory 

P) with errors for input-output magnitudes and for time if and only if the 

following conditions hold:

1. There exists a (syntactic) isomorphic mapping /  from disjoint intervals o f the “input

domain” o f S' (where the interval length is >2*8^) to D

92 The “construction” o f  the syntactic isomorphism is more complicated in this case, since intervals o f a certain length 
need to be defined for input, output, and time domain. Then axioms for the discreteness off  need to be added, etc. to 
allow for an appropriate formal treatment.
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2. There exists a (syntactic) isomorphic mapping O from disjoint intervals o f the “output 

domain” of S  (where the interval length is >2*ellau) to R

3. There exists a function F  that describes the physical property (=behavior) of S  for the 

given input-output properties over time (i.e., F  is a mapping from the “input 

domam”xRealTime o f  S  to its “output dommn"xRealTime described in the language 

and by the laws of P) and a “delay-function” d(x) from inputs to times (derived from 

the F) such that for all reRealTime and all the following holds:

F(r'(x),r}=<CT'(J{x))S> (where r ’e t r h / W - O ,  r+r/(.t)+etimc] ) .93

This definition has achieved a great abstraction step: the magnitudes of physical 

dimensions have been “discretized” to guarantee practical applicability, i.e., continuity 

has been given up. However, the discrete values are still closely tied to the continuous 

values that describe the functionality of S  in P. What is different, in more metaphorical 

terms, is that a grid (with box size >2 *5^  has been superimposed on the functional 

graph, and only the points where the graph intersects with the grid are now considered.

Comparing definition 5.5 to definition 5.1, it becomes obvious how by incorporating 

physical and practical constraints, one arrives at a very restricted definition of what it 

means for a physical system to realize a function. Surely, we could have been satisfied 

with definition 5.2 or even definition 5.3, and for theoretical purposes they are just fine. 

But since we are interested in systems that we can actually use for various tasks (and 

might have to build in order to use them), we have to restrict ourselves to accessible ones,
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systems that can be utilized because they allow us to generate inputs and measure 

outputs.

One of the tasks that systems can be used for is “computation”—i.e., they can be used 

as “computers”. For something to qualify as a “computer” it has to be at least a useable, 

physical system, which allows for data input and for measurable output, which works 

within reasonable time constraints and is sufficiently reliable.94 Of course, other 

conditions will have be added depending on one’s view of “computers” such as 

“executing an algorithm”, etc. Some systems that realize functions according to 

definition 5.5 have all those properties by virtue of discretizing magnitudes and 

restricting the domain of possible values, others—where time plays a crucial role— 

require additional constraints on time (see definition 5.6). Not for all such systems will it 

be possible to define small error values, but some systems, those that are especially 

designed to facilitate the input/output-mappings for certain intervals, will be extremely 

reliable (because intervals are “far” apart and error values, for both time and magnitude, 

are small). Furthermore, these systems will be constructed to realize functions with a 

very small, finite domain (of mostly only two values!).

These properties together have often been summarized as the “digitality” of a system 

(see Haugeland, 1982, p. 215, or Haugeland, 1996, p. 9), i.e., the fact that there are 

“reliable” procedures for applying input and measuring output within the operating limits

9^ One could require the weaker F(I(x),r)c<0(J[x)),r'> to make the error resulting from an inaccurate description 
(“idealization”) o f the physical system itself explicit
94 Reliability is really a tricky issue. On the one hand, it is guaranteed by the laws o f  physics qua laws (i.e., that is 
exactly what it is to be a law: to be reliable), on the other hand, certain physical laws describe processes only up to 
probabilities. In those cases, “reliability” is automatically reduced to “(high) probability”. In any case, how reliable a 
system will be at the end depends on the theory P that describes its nature and functionality as well as on practical 
constraints (such as material, size, environmental influences, etc.).
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of the system and that there are finitely many distinct, discrete values given those limits. 

“Digital” means something like “of, relating to, or using calculation directly with digits 

rather than through measurable physical quantities” (Webster’s dictionary, 1995, italics 

are mine) .95 Although systems that fall under definition 5.5 do not necessarily calculate, 

let alone with digits, they provide all the prerequisites that a system must have to support 

digits, since they realize discrete (timeless) functions by virtue of the physical laws that 

describe their behavior for a given set of inputs. Hence I will call them “digitality 

supporting systems”.

Many electric components are especially designed to support two digits, so-called 

Boolean circuits (such as AND-gates, OR-gates, NOT-gates, etc.). Most o f them realize 

very simple functions such as the XOR function: fixy)=Q if x=y, otherwise fixy)= \ 

(where ‘O’ and ‘ 1’ are the two digits). Note that it is sometimes necessary to explicitly 

bring time into the picture again, especially to describe functions that use feedback (or to 

avoid unwanted behaviors in complex networks of Boolean circuits where the delay time 

of each unit becomes a critical factor in the overall performance). This requires us to 

make a final abstraction and change /  in definition 5.5 from timeless to “discrete time” 

(analogous to definition 5.2), where the input and output domains of/ now also contain 

“discrete time points” from the set Time (normally modeled by integers):

Definition 5.6: A discrete function fix,t) with domain DxTime and range RxTime is 

(practically) realized within by a system S  (describable in a theory P) with

95 Haugeland (1982, p.214) argues that digits do not necessarily have to represent anything.
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errors for input-output magnitudes and stime for time if and only if  the following 

conditions hold:

1. There exists a (syntactic) isomorphic mapping /  from disjoint intervals of the “input 

domain” of S  (where the interval length is >2*edatl) to D

2. There exists a (syntactic) isomorphic mapping O from disjoint intervals o f the “output 

domain” of S  (where the interval length is >2*sdata) to R

3. There exists a (syntactic) isomorphic mapping T from disjoint intervals o f RealTime 

(where the interval length is >2*stimc) to Time

4. There exists a function F  that describes the physical property (=behavior) of S  for the 

given input-output properties over time (i.e., F  is a mapping from the “input 

domain”x/?ea/7wie of S  to its “output domain”x/tea/7f'me described in the language 

and by the laws of P) such for all teTime and all the following holds: if

F(rl(x),T'(t))=<XJZ>, then < X 2 > = < O r \ x (wherey(.r./)=<t’/ > ) . 96

This definition looks very much like definition 5.2, except that all values are discrete 

instead of continuous. So, the above XOR function can now be captured as/fxjV +l^O  

if  x=y at t, otherwisey(x,y,/+l)=l (and/(x^,0)=0, say). And it can be used to define more 

complicated functions using feedback over time, such as the “oscillator” function g  which 

alternates between Os and Is, once the input changes from 0 to I : g(x,t+1 )=J[g{x,t)yx,t+1)

Again, <XJZ>c<0(x'\l\i’)> would be the weaker requirement (see footnote 87).
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and g(x,0)=0 (it will be realized by a simple XOR gate where the output is fed back into 

its second input line) .97

F igu re  5.2 The oscillator circuit: once the input is changed from 0 to 1, 

the output w ill oscillate between 0 and 1 as long as the input is 1.

To summarize the achievements so far: starting at the level of electric components 

and the physical descriptions o f their properties, I defined the notion “a system realizes a 

function” where the system consisted of components describable in terms of the physics 

o f electricity. This notion was then—step by step—refined to account for practical 

problems regarding precision of production and measurement of signals, reliability, range 

of functioning, environmental influences, etc. The final definitions 5.5 and 5.6, 

respectively, related a discrete function (with a time parameter) to digitality supporting 

systems, i.e., systems that are of practical significance because inputs to them can be 

generated, and outputs (occurring after a limited time, possibly depending on the nature 

o f the inputs) can be recognized and measured.98

97 Notice that the functional definition o f g  resembles the scheme o f  recursion where recursion is defined over time 
(this is no coincidence, but I will not be able to explicate the connection here).
98 Note that all definitions assumed only one input domain D and one output domain R, but, o f course, they can be 
straight-forwardly extended to complex domains Dn and Rm.
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5.6 From Circuits to Digital Systems

Definitions 5.5 and 5.6 have made two major abstractions (as compared to definitions 5.3 

and 5.2), but neither times nor input/output magnitudes are completely “decoupled” from 

the concrete. The relation between input/output magnitudes as well as the one between 

points in time (i.e., the space-time metric) is still reflected in the input-output mappings 

together with their respective error terms. Values still stand for themselves and time 

points still have their unique place in the continuous flow of time, whereas in genuine 

digital systems only order matters, (spatial or value) distance and duration, i.e., metric 

distances, are secondary (if defined at all). It is not essential how “far apart” any two 

consecutive points are in time or space (of course, within limits) to be a particular digital 

system. In fact, different digital systems are shown identical qua digital system exactly 

by virtue of abstracting over physical peculiarities. Two steps must, therefore, be 

undertaken in order to prepare physical systems for genuine digitality: existential 

quantification over the particular error terms and a relaxation of the input-output 

mappings from isomorphisms to isomorphic embeddings. The first takes care o f spatial 

and temporal distance o f value and time, respectively. Different physical systems will 

then realize, i.e., be the same digital system, even though they differ with respect to their 

error terms and the magnitudes of their input-output values. Take, for example, two 

binary AND-gates which use different voltages for the binary values 0 and 1 and have 

different gate times. Both will now realize the same AND-gate (because of existential 

quantification over their error terms). To see that this is not sufficient, however, consider 

a ternary AND-gate, AND3, using the values 0, 1, and 2 (the strong Kleene AND-
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function, say). Assume that two different physical systems, S3 and Sl0, are given. S3 

operates within [0,4] Volts and “maps” {0,1,2} to voltages according to 

/(x)=0(.x)=[.t+T-O.1,x+ 1+0.1] with input-output and time errors of 0.1 (where the time 

mapping is given by 7’(x)=[;c+l-0.1rr+ 1+0.1]). S10 operates within [0,130] Volts and 

“maps” values from {0,...,9} to voltages according to /(x)=0(.r)=[(.r+1 )*(x+1 )-

0.5*(x+l),(x+l)*(x+l)+0.5*(x+l)] with input-output and time errors of 0.5*(.r+l) (the 

time mapping is again given by r(jc)=[x+l-0.1rx+l+0.1]). Whereas the former is built to 

work for ternary systems only, the latter is thought to work for decimal systems. Notice 

that input-output mappings in SI0 are not linear, but quadratic (because they depend on the 

input-output error). Suppose now, that S]0 is used as AND3 instead of S3 (because the 

following voltages: “100” (±10) for “ 1”, “ 10” (±10) for “0”, and “50” (±10) for “2” are 

required in a given practical setting, say). Then Si0, realizing the decimal AND-gate 

AND10, also realizes AND3 under the isomorphic embeddings I* and O* obtained by 

composing /  and O with £  defined by £(0)=1, £1)=9, and £2)=4." So, both systems 

realize the same (abstract) function, namely AND3 under relaxed input-output constraints 

(“digits are decoupled from the grid imposed on F  by the input-output mappings and the 

error terms”). And the speed of the circuits is negligible as long as it stays within some 

limits determined pragmatically by the purpose of the circuit’s use. Yet, it is important to 

keep in mind that these mappings are still not arbitrary (as they still preserve the relation 

between different inputs); rather they permit us to “pick and choose” specific values as

99 Note that the order o f the ternary elements induced by this mapping will be 0<2<I, although nothing depends on 
the order in this. However, there will be other cases where the order matters (e.g., in an ADDER circuit).
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digits (if only the distinctness of digits and neither their order nor relative magnitudes 

matters).

For some circuits, the current output does only depend on the current input. For many 

others, the previous output will matter, too, especially for those circuits that allow 

(internal) feedback. The current output o f the “oscillator” circuit defined in the previous 

section, for example, depends on the previous output and the current input. Hence, we 

arrive at functions that are realized by digital systems over time:

Definition 5.7: (Digital Systems) A discrete function fx ,t )  with domain Dx Time and 

range RxTime (D and R finite) is realized by a system S  (describable in a theory P) if and 

only if the following conditions hold:

1. There exists a (syntactic) isomorphic embedding /  from disjoint intervals o f the “input 

domain” of S  (where the interval length is >2*eltlIa for some dependent on 5) to D

2. There exists a (syntactic) isomorphic embedding 0  from disjoint intervals of the 

“output domain” of S  (where the interval length is >2*zlht3 for some dependent on 

S) to R

3. There exists a (syntactic) isomorphic mapping T from disjoint intervals of RealTime 

(where the interval length is > 2 * 8 ^  for some enme dependent on S) to Time

4. There exists a function F  that describes the physical property (=behavior) of S  for the 

given input-output properties over time (i.e., F  is a mapping from the “input 

domain"xRealTime o f S  to its “output domain^xRealTime described in the language
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and by the laws of P) such for all teTime and all xeD  the following holds: if 

F(r'(x),T'(t))=<X,Z>, then <X,Z>=<a\x,) ,T \ t ,)> (wherey(.r,/)=<.r’ , / ’> ) . 100

Digital systems (according to definition 5.7) are physical systems that realize certain, 

discrete functions with finitely many input and output values (depending on their physical 

make-up). Only a finite set of discrete magnitudes corresponding to (some of the) input- 

output values together with the temporal order of applying input at a certain time and 

receiving output at some later time is retained (from the physical description of their 

functionality). The specifics (of how these finite values relate to each other or what the 

duration between any two points in time is) are ignored; hence the information about 

them is lost. It is given up in exchange for a purely theoretical treatment of these 

systems: the physical (engineering) level o f description is left in favor o f a mathematical 

level o f  description, where one can study functions realized by digital systems and their 

properties without recourse to the concrete using tools from mathematics and formal 

logic.

The system S10 from above (which realizes AND3 as well as ANDI0) may elucidate 

this shift from the concrete into the abstract realm. Only three out of the ten values SlQ 

was designed for, found their use in AND3, and their choice was merely guided by 

practical reasons; nothing theoretical forced it. In a sense, it was the set of all possible 

inputs (and outputs, i.e., the practical constraints) together with the function E  that 

determined whether the gate functioned as a ternary or as a decimal AND-gate. The input

* 0® For those circuits whose output at t+1 only depends on their input at /, one can generally ignore the additional time 
place in the function and just consider finite one-place functions (e.g., the way AND-gates are normally defined), as
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1, for example, could be either mapped onto /1)=[3,5] or onto 

7*1)=/(£1))=/*(9)=[95,105] Volts, depending on the input encoding that is used. In other 

words, the “embedding” E suggests that AND3 can be “realized” by ANDl0, where this 

kind of “realizing” can be spelled out as “there exist embeddings / 3, l0 and O3, l0 (in the 

above case E) between the domains and ranges of AND3 and AND10, respectively, such 

that for all x  and y  in the domain of AND3 the following holds: 

O3,I0‘l(AND10(/3„0(x )/3,10(y)))=AND3(x, y), so “comprising” would be a better term. The 

fact that I* is composed of /  and E  (i.e., I*=E°f for some E) shows that and how one can 

determine, on purely mathematical grounds, that S,0 realizes AND3. It even provides a

strategy to determine the class of functions that a physical system S  realizes under 

definition 5.7: take the function /  that S  realizes according to definition 5.6. Then all 

possible subsets of that function (up to renaming of the elements) will be realized by S 

according to definition 5.7. Notice that instead of considering the relationship between a 

function and a physical system, the relationship between two functions becomes the focus 

o f attention, as captured in the following definition:

Definition 5.8: A finite function fix)  with domain D f  and range R f  is comprised by 

discrete, finite function g(.x) with domain Dg and range Rg if  and only if  the following 

conditions hold:

1. There exists a bijective mapping /  from D f  into a subset of Dg

2. There exists a bijective mapping O from f?yinto a subset o f Rg

long as it is understood that the output o f the circuit occurs one “time step” after the input has been applied.
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3. For all x&Df. g(I(x))=0(J{x)).

Using this definition, one can show that S]Q realizes every ANDn for n< 10 by proving that 

every ANDW for «<10 is comprised by ANDI0, and in consequence, that Sl0 realizes the 

function NOT^COR^CNOT^W^OT^fy))) for all «<=10 (once its identity with ANDn is 

proved for all n). The same technique can, furthermore, be used to prove that S10 will not 

realize any ANDrt for n>10 (assuming the given physical description of 510). And this 

kind of negative result could never be obtained within the physical theory itself!

5.7 Digital Systems and the Theory of Computation

Digitality allowed us to abstract from physical realizations and to talk about “abstract” 

digital systems such as the “AND-gate” (knowing at the same time, though, how these 

digital systems can be physically realized). Whereas practical reasons have served their 

purpose to push us from below upwards to digitality, they can no longer influence the 

development, once the realm o f the physical is left. This is where the mathematical 

formalism takes over completely, and logical possibility replace physical possibility. 

Therefore, theoretical arguments are needed to single out certain digital systems that 

theoretically “more interesting” than others.

One, if not the main theoretical interest regarding any physical system that can be 

used for computation is to find out what exactly it can compute (note the modality!). 

This was obvious with single logic gates, but quickly becomes quite involved if  arbitrary 

combinations of such gates are allowed. In short, what we are interested in is the class of 

functions realized by digital systems.
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According to definition 5.7, functions realized by digital systems have a composite 

domain, consisting of a finite and an infinite part (the finite being D—the set of “digits— 

and the infinite being Time). While for some systems it will be possible to ignore Time, 

as it does not influence the input-output relation of the digits (i.e., the first component), 

most systems that have a “memory” (i.e., “internal” states) will exhibit behavior that does 

depend on the their history, i.e., on the kinds of digits presented at particular (previous) 

times. For those systems it is crucial to pay close attention not only to single digits, but 

rather to the sequences o f  digits, as the output of the system is determined by and 

dependent upon them.

The revised standard account of implementation in chapter 2 has already introduced 

the notions “input sequence” and “output sequence” to account for the fact that every 

computational physical system has only finitely many relevant computational states. This 

notion, of course, has to be tailored to the peculiarities o f each particular system under 

scrutiny, as it will depend on the system where sequences start and end (something that 

cannot be decided theoretically but only by looking at the physical description of the 

system). By introducing the notion of sequence of (input/output) states, however, the 

revised standard account has tacitly made a crucial transition: it did not consider the 

function realized by the system any longer, but rather another function, which was 

obtained from the function realized by the system by looking at sequences o f inputs and 

outputs. More formally, this transition can be presented as follows: le t /b e  the function 

realized by a physical system S, and let D  be the finite domain off  R be the finite range
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of /  and Time be the infinite set o f discrete (abstract) times. Then the function f m over 

input-output sequences generated by/ can be defined as:

iff J[h)=o2 and / / :)=o3 and ... and j{in)=on̂  where 

indices denote the first n+1 elements in Times and /ke£> and omeD  for 0<i<=n, 

l<m<=/i+l (“/„”, thus, denotes the input at time n).

Note that / w has infinite domain and range, since it maps arbitrary long sequences 

onto other sequences, and that / “ does not have a time parameter involved anymore 

(which was used to define the “sequences”).

Since the function/ “ (obtained from the function realized by a digital system) can be 

viewed as a mapping from strings o f a finite alphabet to strings of another finite alphabet, 

it is only natural to ask where it figures in the Chomsky hierarchy. And it should not 

come as a surprise that the answer is: it depends! To be precise, it depends on the 

physical theory (that is used to describe the physical system). It is the physical theory 

that will delimit the “computational possibilities” of physical systems by its description 

of possible input-output mappings. If the physical theory is circuit theory (and the 

“primitive objects” are thus “resistors”, “capacitors”, “transistors”, etc.), for example, and 

we are assuming a fixed system (i.e., a system that is not modified over time, such as 

adaptive and/or self-reproductive systems) that cannot exchange information with any 

other system except taking in inputs and producing outputs, then /  is going to be a 

function that can be computed by a FSA (i.e., /  will be regular as the class of regular
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languages is coextensive with the class of functions computed by a finite automaton)— 

this is exactly what one would expect from a finite system with a fixed bound on its 

resources, a bound that does not depend on input magnitude. By the same token, every 

function computed by a FSA can be implemented by a physical system that can be 

described by circuit theory.

To see that every function realized by a digital system (according to circuit theory) 

can be computed by a FSA, suppose that n is the number of bits of the system’s internal 

memory (bits are used here to measure the number of different distinguishable “internal 

states” the system can reliably be in—“distinguishable” and “reliable” are to be 

understood in the sense of the previous discussion). This number is a constant (for a non­

changing system), because the number o f digits of the system is finite, the number of 

parts that could be in different states is finite and there are only finitely many parts. 

Thus, there are only finitely many different state transitions that the system could exhibit, 

therefore there exists a FSA that “mirrors” the state-transitional structure of the system. 

Actually, this FSA is merely an abstraction over the physical peculiarities of states and 

transitions which retains only the minimum necessary to describe them.

For the opposite direction, to see that every function computed by a “reasonably- 

sized” FSA can be realized by a digital system described by circuit theory, just represent 

the FSA as a two-dimensional matrix (“lookup table”), where states are row indices, input 

characters column indices, and matrix elements contain the “next state” for the respective
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indices. 101 This matrix, in turn, can be implemented using digital circuits (such as 

memories, counters, decoders, etc.).

On the other hand, if  an unbounded resource is assumed (e.g., a disk drive with an 

unbounded capacity regardless of its physical realization or a network connections that 

ties the finite system to an “unbounded resource”—an arbitrarily extendable memory, for 

example), then one can see that physical systems described by circuit theory realize 

recursive functions. One way of arguing this is to separate a Turing machine M  into its 

FSA part F  (that is, its finite control) and its tape part, which will then be substituted by a 

some sort of (unbounded) “intelligent” memory (the details of how this memory works 

and stores information are not important). The tape head will be substituted by a network 

connection between the FSA and the memory: the FSA sends two characters over the 

network (one from the alphabet Z and one from {L,R,S}, none of which are in Z), and 

receives one character in Z back from the network. Depending on this character, the FSA 

changes state and sends another two characters, unless it has reached a final state. The 

operations of the intelligent memory are simple: the first character it receives will be 

stored at the current memory location (which it maintains as current). The second 

character will be interpreted as a command to change the current memory location: in 

case of ‘L’ it will switch to the left neighboring location, in case of ‘R’ it will switch to 

the right neighboring location, in case of ‘S’ it will stay at the current location. This 

assumes that the memory is organized in some linear fashion (but nothing crucial hinges 

upon it as long as memory locations can be addressed relatively).

It is crucial to add the restriction “reasonably-sized”, because otherwise the statement would plainly be false: an
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It is easy to see that F aim network memory performes the same operations as M : for 

every state transition <p,a,q,b,m> o f M  (meaning that M  being in state p  upon reading 

character a transits into state q writing character b and performing the tape head 

movement m), F  being in state p  receiving a from the network, transits into state p  

writing first b and then m to the network. The network aim memory (i.e., the unbounded 

resource) makes sure that the characters are stored and retrieved in the right order.

The FSA part F, being an FSA, as well as its ability to send characters to and receive 

them from the network can be built (or at least defined within circuit theory). However, 

this assumption of an unbounded resource is necessarily an idealization (similar to 

Turing’s assumption of the idealized, abstract human computer). So the class of 

recursive functions, and thus those computed by Turing machines are an upper bound for 

the class of functions of digital systems as described by circuit theory.

But what about other physical theories? Are there physical theories in which we can 

describe systems that do not give rise to recursive functions? And what would those 

systems look like? Siegelman and Sontag (1992), for example, show that neural 

networks with rational weights can compute exactly the class of recursive functions. If 

one relaxes the requirement and allows one (!) real number as a weight, then any function 

over the natural numbers can be computed by such a neural network. The argument is 

quite simple: assume an enumeration of all “argument(s)-value”-tuples o f an n-ary 

function/ over the natural numbers and let /?=(£„£,,..., ka,m) be such a tuple. Let r  be the 

string the can be obtained from concatenating the representations over {0 , 1 ,2 ,3} of all

automaton with more states than particles, for example, in the universe could certainly not be built.
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such tuples according to their enumeration, where the representation over {0 ,1 ,2 ,3} of a 

tuple is simply the string

cbinary expansion of &,>2 <binary expansion of /t:>2 < .. .xb inary  expansion o f m>3

The so obtained infinite string r can be interpreted as the base 4 expansion of a Real. 

Thus, the so-obtained Real [r] encodes the function f  Every /i+l-tuple off  can obviously 

be “looked up” in a finite amount of time (just search the string from the beginning for its 

arguments represented in binary and separated by 2). Even partial functions can be 

represented if one agrees upon their representation (e.g., after the last argument ‘3’ is 

added right away instead of the representation of a value for the previous arguments). It 

follows, in particular, that if the function so encoded is non-computable, the so-obtained 

Real will not be computable. If it is possible to store physical manifestations of such a 

Real (whatever they might be) and use them for computations (such as the ones in the 

network), then a physical system that incorporated such a Real could be used to solve 

decision problems that cannot be solved by any Turing machine.

While it seems very unlikely from the point o f view of today’s physics that 

realizations o f “non-computable Reals” can be found in nature (let alone that they can be 

somehow manipulated so as to become an intrinsic part o f a “Super Turing computer”), it 

is important to notice that the definition of digital system does not preclude such systems. 

For example, it allows for “oracle systems”, i.e., systems that have a subsystem that can 

somehow answer some questions that Turing machines cannot answer (how exactly they 

perform their computations does not matter) (see Copeland, 1998b).
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This generality o f the definition o f “digital system” is not a disadvantage by any 

means. Alas, it shows that the notion of “digital system” does not automatically constrain 

the class of functions that can be realized by physical systems to recursive functions (or 

equivalently Turing machine computable functions); rather the class of functions that can 

be realized by a class of physical systems is delimited by the physical theory in which 

these physical systems are described. This insight is an essential part o f the suggested 

approach to physical realization of functions: if there is anything to the term “physical 

realization” that should be kept from its ordinary understanding, then it is the fact that 

physics constrains ultimately what can be realized! Computation (in the sense of 

“computable function”) is certainly no exception.
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Chapter 6: 

Conclusions and Prospects

At this point I will interrupt the exposition to reconsider the notions of computation and 

implementation in the light o f the notion “digital system” developed in the last chapter. 

The main goal of that chapter was to show how one could bridge the gap between the 

concrete and the abstract, between physical systems and the computations they 

implement, without falling prey to the various objections analyzed earlier. In order to do 

that the notional pair “computation-implementation” had to make way for the notion 

“realization of a function”, i.e., what it means for a physical system S described in a 

(physical) theory P to realize a function f  Beginning with a definition of “realization of a 

function” that was closely tied to the theory describing the system, more and more 

constraints were incorporated leading to more and more restricted classes of physical 

systems (and thus restricted functions that are realized by those systems). Stepwise 

abstraction over physical dimensions and magnitudes eventually led to digitality, to the 

total abstraction over physical realizations. It enabled us to talk about functions such as 

AND-gates, registers, and even von Neuman computers, independent of their physical 

realization, while knowing at the same time, how these functions could eventually be 

realized physically in digital systems.101

10- Note that the notion o f  physical realization underlying the notion o f  digital system is neither a  syntactic, nor a
semantic, but a purely physical/mathematical notion obtained from an abstraction process over physical dimensions.
This notion still resides within the realm o f  the physical theory within which we performed these abstractions!

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Digital systems can be viewed as physical systems that admit of a special description 

o f their behavior a description that only needs an order relation (to model temporal 

succession) and a set of distinct, discrete entities (the digits). It is a virtue o f digital 

systems that, because they contain these discrete entities, their temporal evolution 

consists o f successions of (different) combinations of digits, in other words, of 

transformations between patterns. Not only is it well-known that formal grammars can 

capture transformations of patterns (i.e., grammars consisting of a “start state” and 

finitely many rules describing the next state), but also that these transformations lend 

themselves to algorithmic descriptions. Hence, some digital systems can be described by 

algorithms, namely those which realize recursive functions.103 This, in turn, implies that 

the functions they realize are algorithmically expressible. Others, whose mapping 

between input and output sequences cannot be described by finite grammars, can 

nevertheless be described by listing all their countably many input-output-sequence pairs. 

In either case, digital system can be described syntactically.

According to Searle, however, this syntactic specifiability o f digital systems is a 

fundamental weakness o f the computationalist program. Even placing further restrictions 

on the notion of (Turing-)computation will be of no help in solving the “implementation 

problem”,

“because the deep problem is that syntax is essentially an observer-relative notion. The 

multiple realizability o f  computationally equivalent processes in different physical media

*03 I do not know o f any realizable digital system that realizes a non-recursive function. Yet, the definition o f digital 
system is indifferent on this issue, as already mentioned earlier; constraints are solely imposed by the physical 
description o f  the system.
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is not ju s t a sign that the processes are abstract, but that they are not intrinsic to  the 

system  at all. They depend on an interpretation from  the outside." (Searle 92, p. 209)

Reflecting on the development o f the notion of digital system as lined out in the last 

chapter, Searle’s conclusion comes as a surprise: it does seem that computationally 

equivalent processes are intrinsic to the physical system. It might well be the case that 

this property cannot be detected from a “rich physical description” (which contains all the 

physical dimensions and qualities of these dimensions of the system), but can only be 

seen at a more abstract level, which has dispensed with these properties. In particular, 

whether a system is a digital system solely depends on its physical description and not on 

any judgement by outside observers. The syntactic characterization of a digital system is 

not observer-relative: if one agrees that a given physical theory P  does describe the 

behavior o f a physical system S  adequately, then one is also committed to whatever the 

result of the abstraction process predicates about the physical system with respect to the 

notion of digital system (derived from that very physical theory), i.e., to whether 5 is a 

digital system with respect to P. Understanding digital systems (and consequently digital 

computers) as systems that realize a certain class of functions, Searle’s claim that

“there is no w ay you could discover that som ething is intrinsically a digital com puter 

because the characterization o f  it as a digital com puter is always relative to an observer 

who assigns syntactical interpretation to the purely physical features o f  the system .”

(Searle, p . 210)

does not seem justified any more. Of course, this is only true under the assumption that 

the system is adequately described by the given physical theory. This, interestingly, puts 

the problem back in the ballpark of physics: if  anything is observer-relative at all, it
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seems to be what counts as an adequate “physical description”! Once agreement is 

reached on how to physically cast a system’s behavior, its computational guise will also 

be fixed.

It is also worth pointing out at this place that the abstraction process introduced in the 

previous chapter is not intrinsic to physical theories per se, but rather to the 

“mathematical part” of the physical theory. As a consequence, it will be the same for 

different physical theories that use the same mathematical underpinnings (i.e., dynamical 

systems theory). There might be minor modifications resulting from descriptions of 

physical systems that use rational numbers instead of real numbers, or some of the 

abstraction steps could be skipped altogether if the physical description of the system 

already used integers to measure physical magnitudes. Only if the mathematical 

apparatus differs significantly, the sequence of abstraction steps (that eventually lead to 

digital systems) will have to be adapted.104

The approach to “physical realization” developed in the last chapter differs 

significantly from both SV (the semantic views) and CV (the state-to-state 

correspondence views) in at least one major respect: it does not require a notion of 

physical state, but determines directly the function realized by a physical system by 

extracting this function from the physical description of the system. Furthermore, it 

neither has to assume a particular computational formalism (to which the physical system 

exhibits a state-to-state correspondence) nor a particular formally specified computational 

architecture (which can be interpreted over models generated from “labeled physical
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systems”), but can be related to computations described by any computational formalism 

(such as FSAs, TMs, PASCAL programs, cellular automata, etc.) via the function that 

these computations give rise to (see figure 6.1). This suggests the following general 

definition o f when a physical system implements a computation:

Definition 6.1: A physical system S  implements a computation C iff there exists a 

function/ such that S  realizes/ and C com putes/,05

Note that whereas SV takes implementation to be a relation between formal systems and 

standard models of these systems, it is implied by the above that implementation is better 

understood as a relation between two formal systems (or, more restrictively, two parts o f a 

formal theory): the formal theory that is used to describe the behavior of a physical 

system (the physical theory) and the formal theory that is used to specify computations 

(e.g., automata theory)—the latter is linked to the former via the mathematical concept of 

function.106

10^It might have to be altered completely if the underlying mathematics has changed completely. However, in such a 
case, the notions o f  computation (and with it notions o f  implementation) would probably not be spared from a 
complete revision either, hence I would think this restriction should not matter much.
106Note that it is part o f the computational formalism, in which C  is expressed, to define what function the 
computation C  “computes”.
106 There is a similarity between my approach and what Copeland probably had in mind: Copeland required that the 
labeling be systematic—in my approach it is the abstraction process (over physical dimesions guided by practical 
constraints) that is systematic. Note, however, that while Copeland’s requirement allows for different systematic 
labelings, my approach fixes the sequence o f  abstraction steps to be taken (which eventually leave the mathematical 
skeleton o f  the physical input-output function restriced to practical constraints).
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Computation

Function / i s  
“described” by 
the computation 
and realized by 
the system

State-to-state
correspondence

Physical system

described in a

O *p

F ig u re  6.1 T he difference between the state-to-state correspondence 

view  (left) and the “functional realization m odel” (right): in the latter, 

functions serve as m ediators betw een physical system s and 

com putations.

The suggested approach works for arbitrary levels of description o f physical systems 

as well as different computational formalisms (as long as they provide a criterion of how 

to specify the function they compute). It can be even used to define/find physical states 

that do somehow correspond to computational ones for systems that are now to 

implement a certain computation, but where physical states are not given. For example, 

take the oscillator circuit (described in circuit theory) from the previous chapter (figure 

5.2), which is functionally specified as g{x(, t+l)=f{g(x[, t), x/, r+1) and g(x,0)=0 (where xt 

is the input to the system at time t). Compare this to the 2-state automaton in Figure 6.2, 

which also “computes” the same function g  (where x/ is the f-th input character). 

According to definition 6.1., the oscillator circuit implements the above automaton (by 

virtue of “realizing” the function g, which is “computed” by the automaton). Yet, there 

are no obvious candidates for “inner states” in the oscillator circuit that could be set in
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correspondence to the automata states A and B (as would be required by the state-to-state 

correspondence view).

The fact, however, that the oscillator circuit implements the automaton might help to 

single out (quite abstract) states in the oscillator circuit that could be set in 

correspondence to the automata states. First, consider a natural interpretation of the 

“inner” states of this automaton, which views them as corresponding to whether the 

automaton has received an even or odd number of Is in its inputs x (where X{ 

is the current input): the automaton will be in state A if the number of Is received was 

even, otherwise it will be in state B. In general, such an interpretation of inner states can 

be quite misleading as one is tempted to look for physical counterparts (e.g., a "bit” that 

keeps track of the current state), which might not exist. In this case, the recurrent output 

line that feeds into the second input line in the XOR gate plays, indeed, the role of a one- 

bit memory. Thus, if (the only) inner states are defined to be the voltages on this line, 

then low voltages can be set in correspondence to state A and high voltages to state B (the 

same has to be done for inputs and outputs, respectively). Using a state-to-state 

correspondence notion of implementation such as Chalmers’, one can now see that the 

oscillator circuit implements the automaton (under this notion of implementation).

F ig u re  6.2 An autom aton, w hich com putes the function realized by the

oscillator circuit from the previous chaptei.
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Despite the above success with the simple oscillator circuit, I am not sure that this 

strategy will work for more complex (and, in particular, natural) systems. We might fail 

to choose the right level of abstraction, at which a correspondence could be established, 

or we might fail to find the right kinds of physical states (that can be set in 

correspondence with computational ones), or we might not be able to select the 

computationally relevant physical states. Whatever the reason may be, it will still be 

possible to say that a certain physical system implements a computation if definition 6.1 

is satisfied. And looking at the computational description o f that physical system might 

still be instructive, if not helpful in understanding how a system o f  that kind could be 

organized, even if the computation does not reflect the causal organization of that 

particular system. In fact, I venture to say that this kind of reasoning is exactly what 

ultimately motivated AI researchers in the beginning (and maybe still does) to develop 

machines that have the same functional capabilities as we humans, yet a quite different 

“physiology”.

Returning to the assessment of the here-developed approach to implementation, how 

does it cope with the kinds of objections raised against other accounts of implementation 

(e.g., the intuitive account of implementation), in particular, Putnam’s and Searle’s 

arguments? As far as “Putnam-like constructions” (including those of the Slicing 

Theorems)107 are concerned, they are simply not applicable here, since neither state-types 

nor mappings have to be defined: the only mappings involved, i.e., the syntactic 

isomorphisms (for input and output), cannot be defined arbitrarily, but are derived in a
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clearly specified way from the physical description o f the system; if they are not 

appropriate, then neither is the physical description! Therefore, these kinds of 

constructions do not pose a threat.

The same is true for Searle’s "wall computer" as well. It seems extremely unlikely to 

me that the physical description o f the “input-output behavior" (assuming that input and 

output regions have been chosen) of a wall will permit an abstraction (at the level of 

digital systems) such that the resulting function is the function computed by the Wordstar 

program. For a definite answer, however, one would have to fix a certain class of walls, 

inputs, and outputs, etc. and consider their physical description (at a certain level, e.g., the 

level of molecules).

To summarize the most pertinent properties of digital systems: every digital system 

has a finite set of input and a finite set of output digits. Its input-output relation is a 

function, which maps digits onto digits over time. How the system performs this function 

is of no concern (at this level o f abstraction), what counts is what and that the system 

performs i t  Furthermore, nothing has to be known about the internal structure o f the 

system to be able to use it (so no notion of “internal state” is required). If the system is to 

be used in a practical setting, only the physical nature o f its inputs and outputs is of 

importance, because that will determine how these systems can be connected to other 

systems (i.e., measurement instruments, other computational systems, etc.) Yet, for 

engineers, who have to construct, change and maintain complex (digital) systems, it is of 

great importance to be able to look inside the system and divide it into/built it from

'07  i assert that under definition 6.1 the switch system will compute a very simple function:/{switch-on)=light-on, 
_/(switch-off)=light-off. However, I have not gone through the details o f  the physical description o f  the switch-system
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smaller parts. The smallest of these parts, however, will again be viewed as black boxes 

and it will be satisfactory for all the engineering purposes to treat them that way as long 

as it is known what function they realize (what the nature o f the inputs and outputs is, 

etc.). This is were the property of digital systems that any assembly of digital systems 

(no matter how the inputs and outputs are connected, if  they can be connect at all 

according to the nature o f the respective inputs and outputs) is again a digital system 

comes in handy. Complex digital systems can thus be assembled from smaller (digital) 

ones. In this way, engineering can deal with the otherwise intractable complexity of large 

digital systems (e.g., such as computers). Yet, once they are built and they are ready for 

use (i.e., for any practical purposes), they can be regarded as a mere black boxes, where 

not inner states, parts or internal connections, but only the mappings between finite sets 

of inputs and finite sets of outputs matter, i.e., the functions they realize.

Digital systems can be viewed as implementing the functions they realize, and these 

functions, in turn, as the atomic computations implemented by digital systems. The 

qualifier “atomic” is certainly necessary here, since for most people there is more to 

computation than just realizing a certain function, and rightfully so. Cummins (1989), for 

example, when he speaks o f physical systems “satisfying a function” also regards these 

functions as atomic operations which can, in a more complex system, be used to 

implement an algorithm. Some people (e.g., Searle) might find even such a restricted 

notion too permissive (e.g., because planet systems or digestion do realize certain 

functions), others (e.g., Copeland) might disagree with the fact that a notion of physical 

causality underlies this notion of computation (e.g., virtual machines or even the

to derive this function formally.
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mathematical concept o f a Turing machine are excluded that way), and yet others (e.g., 

Shagrir, Smith) might find the whole approach fruitless, because it is, contrary to their 

convictions about how to tackle the notion of computation, intrinsically non-semantic. 

Note, however, that definition 6.1 is silent about the intensional relationship between two 

computational formalisms that compute the same function f  call them C, and C2, and as a 

consequence about the question, whether semantics is necessary to understand this 

relationship. While computing “the same function”, according to definition 6.1, implies 

that both computations are implemented by the same class o f physical systems, this 

identification is restricted extertsionally to the class of physical realizers. Nothing is said 

(and should not be said) about the intensional relationship of C, and C2, since otherwise 

hidden claims about the semantic interpretation of physical theories would enter the 

picture and to keep them out was one of motivations for definition 6.1 in the first place.

Regardless of whether one wants to speak of computation already or mere “atomic 

operation” (or “step-satisfaction” to use Cummins’ term), it seems clear that digitality, 

i.e., the discreteness in space and time, is a prerequisite of physical systems to admit o f 

algorithmic descriptions. Every (reasonably-sized) finite state automaton (FSA)— as was 

pointed out earlier—can be described by a function realized by a digital system 

(described in circuit theory). Even if  some might argue that FSAs are neither algorithms 

nor models of algorithms, their behavior can be described algorithmically. Thus, as a 

consequence, the behavior o f digital systems implementing FSAs can be described 

algorithmically, too.

If a physical system does not support digits, it is not clear how a computational 

description could be imposed on it without rendering the account arbitrary and, hence,
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vacuous (again, the truth of this claim hinges on the definition of “computation” and is 

largely a terminological problem). Granted that it is possible to define “gerrymandered 

digits” by fia t for every physical system (e.g., simply stipulate the property of being a 

digit in that system as a certain physical condition that obtains for a certain amount of 

time whenever, possibly only once). Using digits so defined one can view almost every 

physical system as “digital system”, but this notion of digitality has nothing in common 

with the previous notion extracted from the physical laws describing the behavior of that 

system nor, as far as I can see, will it do any useful practical work. The question whether 

or not a system qualifies as digital according to the previously developed notion has an 

objective, observer-independent answer that solely depends on the nature of the physical 

theory in which the system and its behavior are described. It is defined once (and for all) 

for all potential physical systems and does not depend on ad hoc assumptions made of 

and definitions introduced for particular systems.

Beyond clarifying the relation between the notions of computation and 

implementation, digital systems have many more interesting properties that I have not 

been able to address. Two virtues o f digital systems that are of crucial concern to 

“symbol manipulation” and thus to cognitive science, for example, are compositionality 

and representation. Digits, by virtue o f their distinct form and shape, can be combined to 

form complex “strings of digits” (i.e., with a finite set of digits one can potentially form 

an infinite set of expressions). In binary digital computers, for example, 8 wires (each of 

which, being a “bit”, can assume one of the binary values 0 or 1) are combined to form 

complex bit patterns. So it is possible to generate 65536 different patterns with 16 two­

valued wires instead of having only one wire with 65536 values (which would make
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design issues more delicate).108 “Strings of digits”, in turn, can be used as 

representations (e.g., to represent numbers). The binary number system (which should 

really be called “binary numeral system”) is but one example of such a representational 

scheme. And, of course, representations can represent other representations, which 

themselves represent, and so forth (take, for example, letters which are represented by 

ASCII codes which, in turn, are represent by 128 different bit patterns). Once 

representations are introduced, there is almost no limit as to what can be represented and 

what counts as a representation. In particular, representations are a necessary prerequisite 

for the notion of “program” and in turn for programmable computers.

Digits cannot only be used to represent “data” (on which operations are to be 

performed), but also to represent (i.e., denote) operations. This is possible for two 

reasons: first and foremost, because an appropriate machine architecture can be provided 

(e.g., the well-known von Neumann machine)109, and secondly, because any system— 

given an appropriate architecture—can reliably detect what function is denoted by a 

certain digit (or a combination of digitis) because of the defining characteristics of digits 

(see also Haugeland, 1982).

Systems that use digits to represent internal operations can be designed in a way that 

permits them to select certain operations from a “pool” of basic operations and apply 

them to data. The sequence in which they are applied gives rise to a more complex 

operation (which is defined from the basic operation by virtue of exactly this sequence).

108 See Agre(1997, ch. 4) for a description of the role o f design issues in the development o f  digital computers.
109 What I mean here is CPU, ALU, memory, clock, etc., in short, all the essential parts o f a modem computer. I 
cannot go into details here, but it is an interesting endeavor in its own right to investigate the necessary structural 
features o f digital machines to allow for universality...
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If the class of functions that can be defined from the basic pool of operations using 

machine dependent ways of combining them (such as composition, recursion, etc.) is the 

class of all functions that can be realized by digital systems (with respect to a given 

physical theory), then the particular system can be called “universal” (with respect to a 

given physical theory). If this sequence is, furthermore, a system parameter (i.e., can be 

influenced), then the system can be said to be “programmable”. Both ideas combined 

give rise to the idea o f “universally programmable system” (which can be compared to a 

universal Turing machine, for example).

The above remarks are, o f  course, mere hints at the different directions into which the 

previous story could develop: one possible extension could analyze the different 

possibilities to use digits within a system to denote parts of that very system and attempt 

a reconstruction of a “precursor notion of representation” from these simple, causally 

connected relationships between parts and patterns, also showing how these relationships 

can be utilized to get more “decoupled representations”. Another could attempt to 

develop the notion o f “universally programmable digital system” and relate it to the 

notion of “universal Turing machine”, studying the abstractions and idealizations 

involved in such a task. Or the whole discussion could be broadened and extended to 

include the relationship of “constitution” in addition to the input-output system’s 

behavior. I believe it would be worthwhile to examine all o f these possible extensions 

(for different reasons). What would be common to all these projects is the idea that 

computation and physics are closely tied together. The “gap”, that the notion of 

implementation is supposed to bridge, should in my view not be located between the 

physical description of a system and its computational description, but left where it has
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been in the first place: between our physical descriptions (i.e., in the end perception) of 

the world and the world itself.110

Computation Computation

Physics

Physics

World World

Figure 63  Relocating the alleged gap between computations and 

implementations as a gap between the world and our physical 

description o f  it.

This shift places the “burden of proof’—which theory is the best, most adequate, 

etc.—first on the shoulders of physics, but eventually on practice. It is my conviction 

that whatever works best, can be used technologically, can explain most, etc. will 

ultimately find the broadest acceptance. This is why the whole enterprise was guided 

almost exclusively by practical considerations: because I wanted to focus on functions 

realized by systems that we can recognize and use (eventually as computers). Computing 

is an activity that be recognized as such, initiated, performed, analyzed, etc. It is an 

activity that is employed for various purposes. Searle’s wall, for example, might realize a 

very complicated function at the level of fields, but we are not able (or at least not now) 

to utilize it for computation. That is not to say that only systems computing “by virtue of 

their digitality” are fit for computation. Various analog systems (and their physical

1111 Note that this figure is intended to be silent about whether one wants to place gap between “physics” and the 
“world” in the left graph in addition to the one between “computation” and “physics”. If one is so inclined, I would 
then speak o f “closing the gap between computation and physics” rather than “relocating” it.
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properties) have been applied for fast, reliable computations.111 In the end, what kind of 

system is useful for computation is decided by who is using it: digital computers are built 

by us humans, because they are useful to us. Brains have evolved in animals and are 

obviously o f use for them. Different kinds of currently not considered systems could be 

appropriate and applicable for computation. If “computation” is to mean “computing a 

function” and if this, in turn, is interpreted as “finding the value of the function for a 

given argument” (not necessarily “effectively”), then standard notions of computation are 

included as well as ones that do not rely on “manipulations of representations” (such as 

analog computations performed by VLSI chips, neural networks, etc.). As long as these 

systems accept digits as inputs and produce digits as outputs, they can be treated 

pragmatically as “computing black boxes” (not to be confused with NEXT’S “black 

computing box”)—how they achieve the computation does not matter!

In a way, every system (described at level L) that realizes a function could be seen as 

a computer, namely a computer computing that very function. But most of those 

“computers” are not useful for us; because we have no influence on their inputs and 

outputs, we might not be able to measure them or even recognize them as such. Hence, 

these systems do not qualify as “computers” (in a practical sense), although they could 

still be o f interest for cognitive science. It might well be the case that cognitive systems 

are best described at level L and that at this level we cannot produce the right kinds of 

inputs and outputs, design and assemble the right kinds o f components, etc. (because of

111 It does not matter how a system realizes a function, i.e., if  it computes using representations or if  the result is 
obtained by the laws o f physics (see, e.g. Mills’ analog retina), as long as the system is digital from the outside: a 
digital system can be treated as a “black box” with digital inputs and outputs, the inner organization does not matter for 
computation.
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technical problems). This result would be fatal for the artificial intelligence branch of 

cognitive science, since it would preclude the construction of artificial cognitive systems 

and very likely an understanding of cognitive systems in general. What makes us believe 

that this is not the case is that certain cognitive systems (e.g., human brains) can at some 

level be described as being digital (e.g., the symbol level).112 This abstraction over the 

physical properties of human beings was essential to Turing’s definition o f the “ideal 

human computer” where human capacities to calculate were phrased in purely symbolic 

(i.e., digital) terms (token manipulation, rule application, etc.; see also Haugeland, 1996). 

If the description of the brain at this or at a lower level (and the functions realized at that 

level) is essential to human cognition remains an empirical issue. It necessarily affects 

CCM, since the class of functions realized by digital systems is exactly what is 

commonly taken to be the extension of “computable”. Assuming that the brain can only 

be described adequately at a level lower than the digital one, there are two possibilities: 

either the notion o f computation has to be changed to the class of functions realized by 

systems described at that level, then CCM is true, otherwise CCM is false. If, however, 

the “digital level of description” is adequate for the brain, then CCM is true. In any case, 

this is an empirical question that can only be decided by looking at the functions that 

(parts of) natural brains realize.

112 To some extent brains can even at a neuronal level be described as digital system, see, for example, McCulloch, 
and later von Neumann...

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

References

Agre, P. E. (1997) Computation and Human Experience. Cambridge University Press.

Barwise, J., and Moss, L. 1996. Vicious Circles. CSLI Lecture Notes, Cambridge 

University Press.

Block, N. (1995) “The Mind as the Software of the Brain”, in An Invitation to Cognitive

Science. 2nd Edition: Vol. 3. (Osherson, Daniel N. And Smith, Edward E. eds.)

Cambridge: MIT Press.

Block, N. (1996) “What is Functionalism?” The Encyclopedia o f  Philosophy Supplement, 

Macmillan.

Bridgeman, B. (1980), “Brains + Programs = Minds”, reply to Searle, Brain and 

Behavioral Sciences 3.

Chalmers, D. J. (1994) “On Implementing a Computation”, Minds and Machines 4,

391—402.

Chalmers, D. J. (1996) “Does a Rock Implement Every Finite-State Automaton?”, 

Synthese 108, 310— 333.

Chalmers, D. J. (1997) “A computational Foundation for the Study of Cognition”, 

(published on the internet)

Chrisley, R. L. (1994) “Why Everything Doesn’t Realize Every Computations”, Minds 

and Machines 4, 391— 402.

Cleland, C. E. (1993) “Is the Church-Turing Thesis True?” Minds and Machines 3, 283- 

312.

Copeland, B. J. (1996) “What is Computation?”, Synthese 108,403—420.

Copeland, B. J. (1998a) ‘Turing’s O-machines, Penrose, Searle, and the Brain”, Analysis 

58, 128-138.

Copeland, B. J. (1998b) “Super Turing-Machines”. Complexity 4 (October).

Cummins, R. (1989) Meaning and Mental Representation, Cambridge, MA, MIT Press.

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Davis (1965),

Demopoulos, W. (1987), “On Some Fundamental Distinctions of Computationalism”, 

Synthese 70, 79—96.

Denett, D. C. (1986) “The Logical Geograph of Computational Approaches: A View 

from the East Pole”, The Representation o f  Knowledge and Belief (M. Brand and 

R.M.Hamish, eds.), University o f Arizona Press.

Dietrich, E. (1990) “Computationalism”, Social Epistemology, vol 4, no 2, 135-154.

Endicott, R. P. (1996) “Searle, Syntax, and Observer Relativity”, Canadian Journal o f  

Philosophy, v26, 101 -122.

Fodor, Jerry A. (1981) Representations. Philosophical Essays on the Foundations o f  

Cognitive Science. Cambridge, MA, MIT Press.

Gandy, R. (1980) “Church’s Thesis and Principles for Mechanism”. Proceedings o f the 

Kleene Symposium (J. Barwise, H. J. Keisler and K. Kunen, eds.). New York: North- 

Holland Publishing Company.

Gandy, R. (1988) “”, in The Universal Turing Machine: A Half-Century Survey. 

Kammerer & Unverzagt: Berlin.

Garfield, j. (1995) “Philosophy: Foundations o f Cognitive Science”, in Cognitive 

Science: An Introduction. 2nd edition. (Stillings, Neil A. et al.) Cambridge, MA: MIT 

Press.

Godel, K. (1958) “Uber eine bisher noch nicht beniitzte Erweiterung des finiten 

Standpunktes”, Dialectica 12, 455-475.

Haugeland, J. (1982) “Analog and Analog”, Mind, brain, and function. Norman: 

University of Oklahoma Press.

Haugeland, J. (1996) “What is Mind Design?” Mind Design II. Cambridge, 

Massachusetts: MIT Press.

Hardcastle, V. (1995) “Computationalism”, Synthese 105,303—317.

Herken, R. (1988) The Universal Turing Machine: A Half-Century Survey. Kammerer & 

Unverzagt: Berlin.

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Hodges (1988), in The Universal Turing Machine: A Half-Century Survey. Kammerer 

& Unverzagt: Berlin.

Hopcroft and, J. E. and Ullman, J. D. (1979) Introduction to Automata Theory, 

Languages, and Computation. Massachusetts: Addison-Wesley Publishing Company.

Johnson-Laird, P. N. (1988) The Computer and the Mind. Cambridge, Massachusetts: 

Harvard University Press.

Kearns, (1997) “Thinking Machines: Some Fundamental Confusions”, Minds and 

Machines 7,269—287.

Kim, J. (1996), Philosophy o f  mind, Westview.

Kripke, S. A. (1981). Wittgenstein on Rules and Private Language. Oxford: Blackwell.

Kutz (1998) “Mathematical models of dynamical physical systems” in the Mechanical 

engineer’s handbook, John Wiley & Sons, Inc.: New Jersey, ch. 27.

MacLennan, B. J. (1994) “Words Lie in Our Way”, Minds and Machines 4,421—437.

McCulloch, S. W. and Pitts, W. H. (1943) “A Logical Calculus o f the Ideas Immanent in 

Nervous Activity”. Bulletin o f  Mathematical Biophysics, Vol. 5, Chicago: University 

Press, 115— 133.

Melnyk, A (1996) “Searle’s Abstract Argument Against Strong AI”, Synthese 108, 391— 

419.

Messiah, A. (1961) Quantum Mechanics, Vol. 1 & 2. Amsterdam, Netherlands: North- 

Holland.

Osherson, Daniel N. And Smith, Edward E. eds. (1995) An Invitation to Cognitive 

Science. 2nd Edition: Vol. 2. Cambridge: MIT Press.

Pratt, V. (1987) Thinking Machines -  The Evolution o f Artificial Intelligence. Oxford: 

Basil Blackwell.

Port, R. and van Gelder, T. (1995) Mind as Motion: Explorations in the Dynamics o f  

Cognition. MIT Press, Cambridge.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Putnam, H. (1967) “Psychological Predicates”. (Reprinted as “The Nature o f Mental 

States”. The Nature o f Mind. D. Rosenthal (ed.) New York: Oxford University Press 

(1991).

Putnam, H. (1988) Representation and Reality. Cambridge: MIT Press.

Scheutz, M. (1997) “Facets of implementation” (unpublished manuscript)

Scheutz, M. (1998) “Do Walls Compute After All? -  Challenging Copeland’s Solution to 

Searle’s Theorem Against Strong AI”. Proceedings o f  the 9th Midwest A I and 

Cognitive Science Conference 1998, AAAI Press.

Scheutz, M. (1999) “When Physical Systems Realize Functions...”. Minds and Machines 

9,2, 161-196.

Searle, J (1980) “Minds, Brains and Programs”, The Behavioral and Brain Sciences 3, 

417-424.

Searle, J. (1984) Minds, Brains and Science. Cambridge, Massachusetts: Harvard

University Press.

Searle, J. (1990) “Is the Brain a Digital Computer?”, Proceedings and Addresses o f  the 

American Philosophical Association 64, p. 21-36.

Searle, J. (1992) The Rediscovery o f Mind. Cambridge, Massachusetts: MIT Press.

Searle, J. (1997) The Mystery o f  Consciousness, New York: New York Review.

Shapiro, S. (1995) “Computationalism”. Minds and Machines 5, 517—531.

Slezak, P. and Albury, W. R. (1989) Computer, Brains and Minds: Essays in Cognitive 

Science. Dortrecht, Holland: Kluwer Academic Publishers.

Smith, B. C. (1995) “The Middle Distance”, (unpublished manuscript)

Smith, B. C. (1996) The Origin o f  Objects. Cambridge, Massachusetts: MIT Press.

Smith, B. C. (1998) The Age o f  Significance, (forthcoming)

Stabler (1987), “Kripke on Functionalism and Automata”, Synthese 70,1—22.

Sterelny, K. (1989) “Computational Functional Psychology: Problems and Prospects”, in 

Computer, Brains and Minds: Essays in Cognitive Science (Slezak and Albury, eds.), 

Holland: Kluwer Academic Publishers, 71—93.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Stillings, Neil A. et al. (1995) Cognitive Science: An Introduction. 2nd edition. 

Cambridge, MA: MIT Press.

Turing, A. M. (1936) “On Computable Numbers, with an Application to the 

Entscheidungsproblem”. Proceedings o f  the London Mathematical Society, Series 2 

42, p. 230 -265.

Turing, A.M. (1939) “Systems of Logic Based on Ordinals” Proceedings o f  the London 

Mathematical Society 45, 161-228.

Turing, A. M. (1950) “Computing Machinery and Intelligence”, Mind 59 ,433-60.

Van Gelder, T. (1995) “What Might Cognition Be, If Not Computation?”. Journal o f  

Philosophy 91,345-381.

Van Gelder, T. J. (1998) “The Dynamical Hypothesis in Cognitive Science”, The 

Behavioral and Brain Sciences 1999 (forthcoming).

Wang, Hao (1974) From Mathematics to Philosophy. New York: Humanities Press.

Yorke, James A. et al. (1996) Chaos: An Introduction to Dynamical Systems (Textbooks 

in Mathematical Sciences): Springer Verlag.

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Matthias Scheutz Address:
512 E Angela Blvd.
South Bend, IN 46617 
Work: (219) 631-8752 
Home: (219) 287-4719 
emai\:mscheutz@cse.nd.edu

Work Address:
Departm ent of 

Com puter Science 
and Engineering 

University of Notre Dame 
Notre Dame, IN 46545

Education

USA Indiana University (Bloomington, IN)
Joint Ph.D. in C ognitive S c ien ce  an d  C o m p u te r S c ien ce
Dissertation: The Missing Link: Implementation and Realization of 
Computation s in Cognitive Science and Computer Science

Indiana University (Bloomington, IN)
M.S., C o m p u te r S c ien ce

Fall 94- 
Summer99

Fall 94- 
Spring 96

Austria University of Vienna (Vienna)
Ph.D., P h ilo sophy
Dissertation: 1st d as  der Titel einer Dissertation? - Selbstreferenz neu 
analysierf
(engl. “Is this the Title of a  Dissertation? - Self-reference revisited)

Vienna University o f Technology (Vienna)
Dipl.-lng. (=M.S.), C om pute r S c ien ce
Thesis: “Programmierung eines N C-Postprozessors mit integrierter 
Technologiedatenanpassung -  Obersetzung von ANVIL5000 APT nach 
FANUC"
(engl. “Programming of a  NC-Postprocessor with Integrated Technology 
Data Adjustment - Translation from ANCIL5000 APT to FANUC)

University o f Vienna (Vienna)
Mag. rer. nat. (=M.S.), Form al Logic
Thesis: Die Grundlagen der klassischen Aussagenlogik mit unSren 
Tem poraloperatoren”
(engl. The Foundations of Classical Propositiona! Logics with Unary 
Temporal Operators)”

University of Vienna (Vienna)
Mag. phil. (=M.A.), P h ilo sophy
Thesis: Ober die Bedingung der MSglichkeit von Metaphysik: die 
Grenzen der Letztbegrundung”
(engl. On the Condition of the Possibility of M etaphysics: The Limits of 
Ultimate Justification)

Fall 89 - 
Winter 94

Fall 86-  
Spring 93

Fall 86-  
Spring 93

Fall 85 -  
Summer 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:mscheutz@cse.nd.edu


www.manaraa.com

Work Experience

Current

Previous

Publications

Book

Journal

Articles

Book
Article

Visiting Assistant Professor in the Department of Computer 
Science and Engineering, U niversity  o f N otre D am e 
Lecturer in the Departm ent of Philosophy of Science and Social 
Studies of Science, U niversity  o f Vienna

Current 

Summer 00

Lecturer in the Departm ent of Formal Logic, U niversity  o f V ienna

Visiting Assistant Professor in the Departm ent of Computer 
Science and Engineering a t the U niversity  o f  N otre D am e 
Visiting Assistant Professor in the Departm ent of Philosophy of 
Science and Social S tudies of Science, U niversity o f  V ienna

Summer 99 

Spring 99

Summer 98 - 
Fall 98

Lecturer in the Departm ent of Formal Logic, U niversity  o f V ienna 

Teaching Assistant in the Department of Cognitive Science, IU

Fall 97- 
Spring 98

Lecturer in the Department of Formal Logic, U niversity  o f  V ienna 

Teaching Assistant in the Department of Cognitive Science, IU

Teaching Assistant in the Department of Com puter Science, IU

Summer 97 
Fall 96- 

Spring 97

Fall 95- 
Spring 96

Scheutz, Matthias (1995). 1st das der Trtel eines Buchs?- Selbstreferenz neu analysiert.
Wien: WUV (Wiener Universitatsveriag).

Scheutz, Matthias (Ed.) (2000?). Computationalism: New Directions. MIT P ress. 
Cambridge: MA {in statu nascendi)

Scheutz, Matthias (Ed.) (2000) "Computationalism-The Next Generation?" Special edition 
of the Conceptus series. (forthcoming)

Scheutz, Matthias (1999) "When Physical System s Realize Functions...". Minds and 
Machines, (forthcoming)

Scheutz, Matthias (1999) "Implementation: Computationalism 's W eak Spot". Conceptus. 
(forthcoming)

Scheutz, Matthias (1999) "The Ontological S tatus of Representations". In A  Riegler, M. 
Peschl & A  von Stein (eds.) Understanding Representation in the Cognitive Sciences. 
Plenum Academic / Kluwer Publishers: Holland.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Proceed­
ings

Book
Reviews

Scheutz, Matthias (1999) "A New Computationalism?". In Proceedings ofNTCS'99. 
University of Vienna. MIT Cognet.

Scheutz, Matthias (1998) "Do Walls Compute After All? Challenging Copeland’s  Solution 
to Searle’s  Theorem Against Strong Al". In Proceedings of the Ninth Midwest Al and 
Cognitive Science Conference: AAAI P ress.

Scheutz, Matthias (1997) "The Ontological Status of Representations". In Proceedings of 
NTCSV7. University of Vienna.

Scheutz, Matthias, and Naselaris, Thomas (1997). "Combining Genetic Algorithms and 
Neural Networks: Evolving the Vision System  for an Autonomous R obot" In 
Proceedings of the Eighth Midwest Al and Cognitive Science Conference: AAAI 
Press.

Scheutz, Matthias, and Tillotson, Jenett (1996). "A Dynamic View of Reference". In 
Proceedings of the Seventh Midwest Al and Cog Sci Conference (published online).

Scheutz, Matthias (1999) Book review of The Philosophical Computer by Patrick Grim, 
Gary Mar, and Paul St. Denis. Philosophical Psychology.

Scheutz, Matthias (1999) Book review of Eine Elementare EinfQhrung in die Theorie der 
Turing-Maschinen by Oswald Wiener, Manuel Bonik und Robert Hddike. Eureka.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


